美文网首页
深度学习算法通俗

深度学习算法通俗

作者: real东海 | 来源:发表于2018-09-17 01:13 被阅读0次

1.cnn 卷积神经网络(图像识别领域算法,避免前期复杂预处理,直接输入原始图像)

卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了特征分辨率。

CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形,该部分功能主要由池化层实现。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

2.RNN(定向连接成环的循环神经网络,,语音识别,翻译,图片描述等)

循环神经网络Recurrent Neural Network。一种节点定向连接成环的人工神经网络

这种网络的内部状态可以展示动态时序行为。不同于前馈神经网络的是,RNN可以利用它内部的记忆来处理任意时序的输入序列,这让它可以更容易处理如不分段的手写识别、语音识别等。

应用 RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得一定成功

3.LSTM(Long Short-Term Memory)(时间序列回归的预测,语音翻译等,点击率预测,股票,音乐等

是长短期记忆网络,是一种时间递归神经网络,也是一种经过改造的RNN适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。

LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务

STM区别于RNN的地方,主要就在于它在算法中加入了一个判断信息有用与否的“处理器”,这个处理器作用的结构被称为cell。

一个cell当中被放置了三扇门,分别叫做输入门、遗忘门和输出门。一个信息进入LSTM的网络当中,可以根据规则来判断是否有用。只有符合算法认证的信息才会留下,不符的信息则通过遗忘门被遗忘。

说起来无非就是一进二出的工作原理,却可以在反复运算下解决神经网络中长期存在的大问题。目前已经证明,LSTM是解决长序依赖问题的有效技术,并且这种技术的普适性非常高,导致带来的可能性变化非常多。各研究者根据LSTM纷纷提出了自己的变量版本,这就让LSTM可以处理千变万化的垂直问题。

相关文章

  • 深度学习算法通俗

    1.cnn 卷积神经网络(图像识别领域算法,避免前期复杂预处理,直接输入原始图像) 卷积神经网络是近年发展起来,并...

  • 迷雾探险3 | 强化学习入门

    看完《迷雾探险2》的深度学习入门,又发现了一些不错的文章: 通俗易懂的深度学习发展介绍:从最基本的神经网络算法(单...

  • 深度学习最常用的学习算法:Adam优化算法

    www.dlworld.cn 听说你了解深度学习最常用的学习算法:Adam优化算法?-深度学习世界深度学习常常需要...

  • 使用Tensorflow实现目标检测(一、基础术语篇)

    1、机器学习与深度学习的区别2、深度学习算法是什么,怎么使用深度学习算法3、数据模型是什么4、什么叫目标检测5、t...

  • 感知机

    感知机 感知机算法是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。在学习感知机的构造时可以学习到深度学习...

  • 深度学习基础教程

    深度学习基础教程 [tag]深度学习,机器学习,数据分析,挖掘,算法, [content]深度学习的入门基础。 [...

  • 2019-07-25 深度学习

    机器学习 - 神经网络 - 深度学习 图像 文本 语音 深度学习算法比机器学习都要好很多bp算法:多层感知器的误差...

  • 人工智能学习

    人工智能算法可以分为机器学习算法(Machine Learning)和深度学习算法(Deep Learning) ...

  • 带你动手编程的强化学习著作,每行代码都是它的温柔!

    如今,深度强化学习算法被认为是最有可能实现通用人工智能计算的方法。 由于深度强化学习算法融合了深度学习、统计、信息...

  • 深度学习之BP算法通俗易懂篇

    欢迎关注本人的微信公众号AI_Engine(关注的人不算多,盘起来啊同志们) 在说BP之前我们不得不提一下...

网友评论

      本文标题:深度学习算法通俗

      本文链接:https://www.haomeiwen.com/subject/bbtcnftx.html