美文网首页
19 - 依赖反转原则

19 - 依赖反转原则

作者: 舍是境界 | 来源:发表于2021-08-20 06:47 被阅读0次

    本文我们来学习最后一个原则:依赖反转原则。在前面文章中,我们讲到,单一职责原则和开闭原则的原理比较简单,但是,想要在实践中用好却比较难。而今天我们要讲到的依赖反转原则正好相反。这个原则用起来比较简单,但概念理解起来比较难。比如,下面这几个问题,你看看能否清晰地回答出来:

    • “依赖反转”这个概念指的是“谁跟谁”的“什么依赖”被反转了?“反转”两个字该如何理解?
    • 我们还经常听到另外两个概念:“控制反转”和“依赖注入”。这两个概念跟“依赖反转”有什么区别和联系呢?它们说的是同一个事情吗?
    • 如果你熟悉 Java 语言,那 Spring 框架中的 IOC 跟这些概念又有什么关系呢?

    本文将会带你将这些问题彻底搞个清楚。之后再有人问你,你就能轻松应对。

    控制反转(IOC)

    • 在讲“依赖反转原则”之前,我们先讲一讲“控制反转”。控制反转的英文翻译是 Inversion Of Control,缩写为 IOC。此处强调一下,如果你是 Java 工程师的话,暂时别把这个“IOC”跟 Spring 框架的 IOC 联系在一起
    public class UserServiceTest {
      public static boolean doTest() {
        // ... 
      }
      
      public static void main(String[] args) {//这部分逻辑可以放到框架中
        if (doTest()) {
          System.out.println("Test succeed.");
        } else {
          System.out.println("Test failed.");
        }
      }
    }
    
    • 在上面的代码中,所有的流程都由程序员来控制。如果我们抽象出一个下面这样一个框架,我们再来看,如何利用框架来实现同样的功能。具体的代码实现如下所示:
    public abstract class TestCase {
      public void run() {
        if (doTest()) {
          System.out.println("Test succeed.");
        } else {
          System.out.println("Test failed.");
        }
      }
      
      public abstract boolean doTest();
    }
    public class JunitApplication {
      private static final List<TestCase> testCases = new ArrayList<>();
      
      public static void register(TestCase testCase) {
        testCases.add(testCase);
      }
      
      public static final void main(String[] args) {
        for (TestCase case: testCases) {
          case.run();
        }
      }
    
    • 把这个简化版本的测试框架引入到工程中之后,我们只需要在框架预留的扩展点,也就是 TestCase 类中的 doTest() 抽象函数中,填充具体的测试代码就可以实现之前的功能了,完全不需要写负责执行流程的 main() 函数了。 具体的代码如下所示:
    public class UserServiceTest extends TestCase {
      @Override
      public boolean doTest() {
        // ... 
      }
    }
    // 注册操作还可以通过配置的方式来实现,不需要程序员显示调用register()
    JunitApplication.register(new UserServiceTest();
    
    • 刚刚举的这个例子,就是典型的通过框架来实现“控制反转”的例子。框架提供了一个可扩展的代码骨架,用来组装对象、管理整个执行流程。程序员利用框架进行开发的时候,只需要往预留的扩展点上,添加跟自己业务相关的代码,就可以利用框架来驱动整个程序流程的执行
    • 这里的“控制”指的是对程序执行流程的控制,而“反转”指的是在没有使用框架之前,程序员自己控制整个程序的执行。在使用框架之后,整个程序的执行流程可以通过框架来控制。流程的控制权从程序员“反转”到了框架。
    • 实际上,实现控制反转的方法有很多,除了刚才例子中所示的类似于模板设计模式的方法之外,还有马上要讲到的依赖注入等方法,所以,控制反转并不是一种具体的实现技巧,而是一个比较笼统的设计思想,一般用来指导框架层面的设计。

    依赖注入(DI)

    • 依赖注入跟控制反转恰恰相反,它是一种具体的编码技巧。依赖注入的英文翻译是 Dependency Injection,缩写为 DI。对于这个概念,有一个非常形象的说法,那就是:依赖注入是一个标价 25 美元,实际上只值 5 美分的概念。也就是说,这个概念听起来很“高大上”,实际上,理解、应用起来非常简单。
    • 那到底什么是依赖注入呢?我们用一句话来概括就是:不通过 new() 的方式在类内部创建依赖类对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递(或注入)给类使用。
    • 通过一个例子来解释一下。在这个例子中,Notification 类负责消息推送,依赖 MessageSender 类实现推送商品促销、验证码等消息给用户。我们分别用依赖注入和非依赖注入两种方式来实现一下。具体的实现代码如下所示:
    // 非依赖注入实现方式
    public class Notification {
      private MessageSender messageSender;
      
      public Notification() {
        this.messageSender = new MessageSender(); //此处有点像hardcode
      }
      
      public void sendMessage(String cellphone, String message) {
        //...省略校验逻辑等...
        this.messageSender.send(cellphone, message);
      }
    }
    public class MessageSender {
      public void send(String cellphone, String message) {
        //....
      }
    }
    // 使用Notification
    Notification notification = new Notification();
    // 依赖注入的实现方式
    public class Notification {
      private MessageSender messageSender;
      
      // 通过构造函数将messageSender传递进来
      public Notification(MessageSender messageSender) {
        this.messageSender = messageSender;
      }
      
      public void sendMessage(String cellphone, String message) {
        //...省略校验逻辑等...
        this.messageSender.send(cellphone, message);
      }
    }
    //使用Notification
    MessageSender messageSender = new MessageSender();
    Notification notification = new Notification(messageSender);
    
    • 通过依赖注入的方式来将依赖的类对象传递进来,这样就提高了代码的扩展性,我们可以灵活地替换依赖的类。这一点在我们之前讲“开闭原则”的时候也提到过。当然,上面代码还有继续优化的空间,我们还可以把 MessageSender 定义成接口,基于接口而非实现编程。改造后的代码如下所示:
    public class Notification {
      private MessageSender messageSender;
      
      public Notification(MessageSender messageSender) {
        this.messageSender = messageSender;
      }
      
      public void sendMessage(String cellphone, String message) {
        this.messageSender.send(cellphone, message);
      }
    }
    public interface MessageSender {
      void send(String cellphone, String message);
    }
    // 短信发送类
    public class SmsSender implements MessageSender {
      @Override
      public void send(String cellphone, String message) {
        //....
      }
    }
    // 站内信发送类
    public class InboxSender implements MessageSender {
      @Override
      public void send(String cellphone, String message) {
        //....
      }
    }
    //使用Notification
    MessageSender messageSender = new SmsSender();
    Notification notification = new Notification(messageSender);
    
    • 实际上,你只需要掌握刚刚举的这个例子,就等于完全掌握了依赖注入。尽管依赖注入非常简单,但却非常有用,在后面的章节中,我们会讲到,它是编写可测试性代码最有效的手段。

    依赖注入框架(DI Framework)

    • 弄懂了什么是“依赖注入”,我们再来看一下,什么是“依赖注入框架”。我们还是借用刚刚的例子来解释。
    • 在采用依赖注入实现的 Notification 类中,虽然我们不需要用类似 hard code 的方式,在类内部通过 new 来创建 MessageSender 对象,但是,这个创建对象、组装(或注入)对象的工作仅仅是被移动到了更上层代码而已,还是需要我们程序员自己来实现。具体代码如下所示:
    public class Demo {
      public static final void main(String args[]) {
        MessageSender sender = new SmsSender(); //创建对象
        Notification notification = new Notification(sender);//依赖注入
        notification.sendMessage("13918942177", "短信验证码:2346");
      }
    }
    
    • 在实际的软件开发中,一些项目可能会涉及几十、上百、甚至几百个类,类对象的创建和依赖注入会变得非常复杂。如果这部分工作都是靠程序员自己写代码来完成,容易出错且开发成本也比较高。而对象创建和依赖注入的工作,本身跟具体的业务无关,我们完全可以抽象成框架来自动完成。
    • 你可能已经猜到,这个框架就是“依赖注入框架”。我们只需要通过依赖注入框架提供的扩展点,简单配置一下所有需要创建的类对象、类与类之间的依赖关系,就可以实现由框架来自动创建对象、管理对象的生命周期、依赖注入等原本需要程序员来做的事情。
    • 实际上,现成的依赖注入框架有很多,比如 Google Guice、Java Spring、Pico Container、Butterfly Container 等。不过,如果你熟悉 Java Spring 框架,你可能会说,Spring 框架自己声称是控制反转容器(Inversion Of Control Container)。
    • 实际上,这两种说法都没错。只是控制反转容器这种表述是一种非常宽泛的描述,DI 依赖注入框架的表述更具体、更有针对性。因为我们前面讲到实现控制反转的方式有很多,除了依赖注入,还有模板模式等,而 Spring 框架的控制反转主要是通过依赖注入来实现的。不过这点区分并不是很明显,也不是很重要,你稍微了解一下就可以了。

    依赖反转原则(DIP)

    • 前面讲了控制反转、依赖注入、依赖注入框架,现在,我们来讲一讲今天的主角:依赖反转原则。依赖反转原则的英文翻译是 Dependency Inversion Principle,缩写为 DIP。中文翻译有时候也叫依赖倒置原则。

    High-level modules shouldn’t depend on low-level modules. Both modules should depend on abstractions. In addition, abstractions shouldn’t depend on details. Details depend on abstractions.

    • 将它翻译成中文,大概意思就是:高层模块(high-level modules)不要依赖低层模块(low-level)。高层模块和低层模块应该通过抽象(abstractions)来互相依赖。除此之外,抽象(abstractions)不要依赖具体实现细节(details),具体实现细节(details)依赖抽象(abstractions)。
    • 所谓高层模块和低层模块的划分,简单来说就是,在调用链上,调用者属于高层,被调用者属于低层。在平时的业务代码开发中,高层模块依赖底层模块是没有任何问题的。实际上,这条原则主要还是用来指导框架层面的设计,跟前面讲到的控制反转类似。我们拿 Tomcat 这个 Servlet 容器作为例子来解释一下。
    • Tomcat 是运行 Java Web 应用程序的容器。我们编写的 Web 应用程序代码只需要部署在 Tomcat 容器下,便可以被 Tomcat 容器调用执行。按照之前的划分原则,Tomcat 就是高层模块,我们编写的 Web 应用程序代码就是低层模块。Tomcat 和应用程序代码之间并没有直接的依赖关系,两者都依赖同一个“抽象”,也就是 Servlet 规范。Servlet 规范不依赖具体的 Tomcat 容器和应用程序的实现细节,而 Tomcat 容器和应用程序依赖 Servlet 规范。

    小结

    • 控制反转是一个比较笼统的设计思想,并不是一种具体的实现方法,一般用来指导框架层面的设计。这里所说的“控制”指的是对程序执行流程的控制,而“反转”指的是在没有使用框架之前,程序员自己控制整个程序的执行。在使用框架之后,整个程序的执行流程通过框架来控制。流程的控制权从程序员“反转”给了框架。
    • 依赖注入和控制反转恰恰相反,它是一种具体的编码技巧。我们不通过 new 的方式在类内部创建依赖类的对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递(或注入)给类来使用。
    • 我们通过依赖注入框架提供的扩展点,简单配置一下所有需要的类及其类与类之间依赖关系,就可以实现由框架来自动创建对象、管理对象的生命周期、依赖注入等原本需要程序员来做的事情。
    • 依赖反转原则也叫作依赖倒置原则。这条原则跟控制反转有点类似,主要用来指导框架层面的设计。高层模块不依赖低层模块,它们共同依赖同一个抽象。抽象不要依赖具体实现细节,具体实现细节依赖抽象。

    相关文章

      网友评论

          本文标题:19 - 依赖反转原则

          本文链接:https://www.haomeiwen.com/subject/bcunbltx.html