美文网首页iOS RunLoop总结
iOS - 深入理解 RunLoop

iOS - 深入理解 RunLoop

作者: 路飞_Luck | 来源:发表于2018-07-07 17:47 被阅读75次
    序言

    RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,该文章将从CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层原理实现。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池,延迟回调,触摸事件,屏幕刷新等功能。

    目录
    • RunLoop 的概念
      • RunLoop 与线程的关系
      • RunLoop 对外的接口
      • RunLoop 的 Mode
      • RunLoop 的内部逻辑
      • RunLoop 的底层实现
    • 苹果用 RunLoop 实现的功能
      • AutoreleasePool
      • 事件响应
      • 手势识别
      • 界面更新
      • 定时器
      • PerformSelecter
      • 关于 GCD
      • 关于网络请求
    • RunLoop 的实际应用举例
      • AFNetworking
      • AsyncDisplayKit

    1.RunLoop 的概念

    一般来讲,一个线程一次只能处理一个任务,执行完成后线程就会推出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑如下所示:

    function loop() {
        initialize();
        do {
            var message = get_next_message();
            process_message(message);
        } while (message != quit);
    }
    

    这种模型通常被称为Event Loop。Event Loop 在很多系统和框架里面都有实现,比如 Node.js 和Windows 程序的消息循环,OSX/iOS 里的RunLoop。实现这种模型的关键在于:如何管理事件、消息,如何让线程在没有处理消息时休眠以避免资源占用,在有消息到来时立刻被唤醒。

    所以,RunLoop 实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面的Event Loop 的逻辑。线程执行了这个函数之后,就会一直处于这个函数内部"接受消息->等待->处理"的循环中,直到这个循环结束(比如传入 quit的消息),函数返回。

    OSX/iOS 系统中,提供了两个这样的对象:NSRunLoop 和CFRunLoopRef。

    • CFRunLoopRef 是在CoreFounction 框架内的,它提供了纯 C 函数的 API,所有这些 API 都是线程安全的。
    • NSRunLoop是基于CFRunLoopRef 的封装,提供了面向对象的 API,但是这些 API 不是线程安全的。

    CFRunLoopRef 通过链接,可以下载到整个CoreFoundation 的源码查看
    跨平台的 CoreFoundation 版本 这个版本的源码可能和现有 iOS 系统中的实现有些不一样,但是更容易编译,而且已经适配了 Linux/Windows。

    1.1 RunLoop 与线程的关系

    首先,iOS 开发中会遇到两个线程对象:pthread_tNSThread。之前苹果有份文档表明了NSThread 只是pthread_t 的封装。苹果并没有提供这两个对象相互转换的接口,但是不管如何,可以肯定pthread_tNSThreead 是一一对应的。例如:你可以通过pthread_main_thread_np()或[NSThread mainThread]来获取主线程;也可以通过pthread_self()或[NSThread currentThread]来获取当前线程。CFRunLoop 是基于 pthread 来管理的。

    苹果不允许直接创建 RunLoop,它只提供了两个自动获取的函数CFRunLoopGetMain()CFRunLoopGetCurrent()。这两个函数的内部逻辑大概如下。

    /// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef
    static CFMutableDictionaryRef loopsDic;
    /// 访问 loopsDic 时的锁
    static CFSpinLock_t loopsLock;
     
    /// 获取一个 pthread 对应的 RunLoop。
    CFRunLoopRef _CFRunLoopGet(pthread_t thread) {
        OSSpinLockLock(&loopsLock);
        
        if (!loopsDic) {
            // 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。
            loopsDic = CFDictionaryCreateMutable();
            CFRunLoopRef mainLoop = _CFRunLoopCreate();
            CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop);
        }
        
        /// 直接从 Dictionary 里获取。
        CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread));
        
        if (!loop) {
            /// 取不到时,创建一个
            loop = _CFRunLoopCreate();
            CFDictionarySetValue(loopsDic, thread, loop);
            /// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。
            _CFSetTSD(..., thread, loop, __CFFinalizeRunLoop);
        }
        
        OSSpinLockUnLock(&loopsLock);
        return loop;
    }
     
    CFRunLoopRef CFRunLoopGetMain() {
        return _CFRunLoopGet(pthread_main_thread_np());
    }
     
    CFRunLoopRef CFRunLoopGetCurrent() {
        return _CFRunLoopGet(pthread_self());
    }
    

    从上面源码可以看出,线程和RunLoop 之间是一一对应的,其关系保存在一个全局的 Dictionary 里。线程刚创建时并没有 RunLoop,如果你不主动获取,那么它一直都不会有。RunLoop 的创建是发生在第一次获取时,RunLoop 的销毁时发生在线程结束时。你只能在一个线程的内部获取其 RunLoop(主线程除外)

    1.2 RunLoop 对外的接口

    在 CoreFoundation 里面关于 RunLoop 有5个类

    • CFRunLoopRef
    • CFRunLoopModeRef
    • CFRunLoopSourceRef
    • CFRunLoopTimerRef
    • CFRunLoopObserverRef

    其中 CFRunLoopModeRef 类并没有对外暴露,只是通过 CFRunLoopRef 的接口进行了封装。他们的关系如下:

    image.png

    一个 RunLoop 包含若干个 Mode,每个 Mode 又包含若干个Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个 Mode,这个 Mode 被称为 CurrentMode。如果需要切换 Mode,只能退出 Loop,再重新指定一个 Mode 进入。这样做主要是为了分隔开不同组的Source/Timer/Observer,让其互不影响。

    CFRunLoopSourceRef是事件产生的地方。Source 有两个版本:Source0和Source1。

    • Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用CFRunLoopWakeUp(runloop)来唤醒 RunLoop,让其处理这个事件。
    • Source1 包含了一个mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下文中会说道。

    CFRunLoopTimerRef是基于时间的触发器,它和 NSTimer 是toll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop 会注册对应的时间点,当时间点到时,RunLoop 会被唤醒以执行那个回调。

    CFRunLoopObserverRef 是观察者,每个Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受这个变化。可以观测的时间点有如下几个

    typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
        kCFRunLoopEntry         = (1UL << 0), // 即将进入Loop
        kCFRunLoopBeforeTimers  = (1UL << 1), // 即将处理 Timer
        kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
        kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
        kCFRunLoopAfterWaiting  = (1UL << 6), // 刚从休眠中唤醒
        kCFRunLoopExit          = (1UL << 7), // 即将退出Loop
    };
    

    上面的Source/Timer/Observer 被统称为mode item,一个 item 可以被同时加入多个 mode。但一个 item 被重复加入同一个 mode 时是不会有效果的。如果一个 mode 中一个 item 都没有,则 RunLoop 会直接退出,不进入循环。

    1.3 RunLoop 的 Mode

    CFRunLoopMode 和CFRunLoop 的结构大致如下

    struct __CFRunLoopMode {
        CFStringRef _name;            // Mode Name, 例如 @"kCFRunLoopDefaultMode"
        CFMutableSetRef _sources0;    // Set
        CFMutableSetRef _sources1;    // Set
        CFMutableArrayRef _observers; // Array
        CFMutableArrayRef _timers;    // Array
        ...
    };
     
    struct __CFRunLoop {
        CFMutableSetRef _commonModes;     // Set
        CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
        CFRunLoopModeRef _currentMode;    // Current Runloop Mode
        CFMutableSetRef _modes;           // Set
        ...
    };
    

    这里有个概念叫CommonModes,一个Mode可以将自己标记为Common属性(通过将其ModeName添加到RunLoop的CommonModes中)。每当RunLoop的内容发生变化时,RunLoop都会自动将_commonModeItems里的Source/Observer/timer同步到具有“Common”标记的所有Mode里。

    应用场景举例
    主线程的 RunLoop 里有两个预置的 Mode:kCFRunLoopDefaultModeUITrackingRunLoopMode。这两个 Mode 都已经被标记为”Common”属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。当你创建一个 Timer 并加到 DefaultMode 时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,并且也不会影响到滑动操作。

    有时你需要一个 Timer,在两个 Mode 中都能得到回调,一种办法就是将这个 Timer 分别加入这两个 Mode。还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 commonModeItems中。commonModeItems 被 RunLoop 自动更新到所有具有Common属性的 Mode 里去。

    CFRunLoop对外暴露的管理Mode接口只有下面2个

    CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
    CFRunLoopRunInMode(CFStringRef modeName, ...);
    

    Mode暴露的管理mode item的接口有下面几个

    CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
    CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
    CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
    CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
    CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
    CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
    

    你只能通过mode name来操作内部的moed,当你传入一个新的mode name,但是RunLoop内部没有对应的mode时,RunLoop会自动帮你创建对应的CFRunLoopModeRef。对于一个RunLoop来说,其内部的mode只能增加不能删除。

    苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode ,分别是NSDefaultRunLoopModeUITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode。

    同时苹果还提供了一个操作Common标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作Common Items或者标记一个Mode为Common。使用时注意区分这个字符串和其他mode name。

    1.4 RunLoop的内部逻辑

    根据苹果在文档里的说明,RunLoop内部的逻辑大致如下:

    RunLoop.png

    其内部代码整理如下(太长了不想看的可以直接跳过去,后面会有说明)。

    /// 用DefaultMode启动
    void CFRunLoopRun(void) {
        CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
    }
     
    /// 用指定的Mode启动,允许设置RunLoop超时时间
    int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
        return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
    }
     
    /// RunLoop的实现
    int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
        
        /// 首先根据modeName找到对应mode
        CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
        /// 如果mode里没有source/timer/observer, 直接返回。
        if (__CFRunLoopModeIsEmpty(currentMode)) return;
        
        /// 1. 通知 Observers: RunLoop 即将进入 loop。
        __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
        
        /// 内部函数,进入loop
        __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
            
            Boolean sourceHandledThisLoop = NO;
            int retVal = 0;
            do {
     
                /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
                /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
                /// 执行被加入的block
                __CFRunLoopDoBlocks(runloop, currentMode);
                
                /// 4. RunLoop 触发 Source0 (非port) 回调。
                sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
                /// 执行被加入的block
                __CFRunLoopDoBlocks(runloop, currentMode);
     
                /// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
                if (__Source0DidDispatchPortLastTime) {
                    Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
                    if (hasMsg) goto handle_msg;
                }
                
                /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
                if (!sourceHandledThisLoop) {
                    __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
                }
                
                /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
                /// • 一个基于 port 的Source 的事件。
                /// • 一个 Timer 到时间了
                /// • RunLoop 自身的超时时间到了
                /// • 被其他什么调用者手动唤醒
                __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
                    mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
                }
     
                /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
                
                /// 收到消息,处理消息。
                handle_msg:
     
                /// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
                if (msg_is_timer) {
                    __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
                } 
     
                /// 9.2 如果有dispatch到main_queue的block,执行block。
                else if (msg_is_dispatch) {
                    __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
                } 
     
                /// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
                else {
                    CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
                    sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
                    if (sourceHandledThisLoop) {
                        mach_msg(reply, MACH_SEND_MSG, reply);
                    }
                }
                
                /// 执行加入到Loop的block
                __CFRunLoopDoBlocks(runloop, currentMode);
                
     
                if (sourceHandledThisLoop && stopAfterHandle) {
                    /// 进入loop时参数说处理完事件就返回。
                    retVal = kCFRunLoopRunHandledSource;
                } else if (timeout) {
                    /// 超出传入参数标记的超时时间了
                    retVal = kCFRunLoopRunTimedOut;
                } else if (__CFRunLoopIsStopped(runloop)) {
                    /// 被外部调用者强制停止了
                    retVal = kCFRunLoopRunStopped;
                } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
                    /// source/timer/observer一个都没有了
                    retVal = kCFRunLoopRunFinished;
                }
                
                /// 如果没超时,mode里没空,loop也没被停止,那继续loop。
            } while (retVal == 0);
        }
        
        /// 10. 通知 Observers: RunLoop 即将退出。
        __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
    }
    

    可以看到,实际上RunLoop就是这样一个函数,其内部是一个do-while循环。当你调用CFRunLoopRun()时,线程会一直停留在这个循环里,直到超时或被手动停止,该函数才会返回。

    1.5 RunLoop的底层实现

    从上面代码可以看到,RunLoop的核心是基于mach port的,其进入休眠时调用的函数是mach_msg()。为了解释这个逻辑,下面稍微介绍一下OSX/iOS的系统架构

    image.png

    苹果官方将整个系统大致划分为上述4个层次

    • 应用层 包括用户能接触到的图形应用,例如Spotlight,Aqua,SpringBoard等
    • 应用框架层 开发人员接触到的Cocoa等框架
    • 核心框架层包括各种核心框架,OpenGL等内容
    • Darwin 即操作系统的核心,包括系统内核,驱动,Shell等内容,这一层是开源的。其所有源码都可以在opensource.apple.com中找到

    我们在深入看一下Darwin这个核心的架构

    image.png

    其中,在硬件层上面的三个组成部分:MachBSDIOKit(还包括一些上面没有标注的内容),共同组成了XNU内核。

    • XNU 内核的内环被称作Mach,其作为一个微内核,仅提供了诸如处理器调度,IPC(进程间通信)等非常少量的基础服务。
    • BSD层可以看作围绕Mach层的一个外环,其提供了诸如进程管理,文件系统和网络等功能。
    • IOKit层是为设备驱动提供了一个面向对象(C++)的一个框架。

    Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为”对象”。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。”消息”是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。

    Mach 的消息定义是在 <mach/message.h> 头文件如下

    typedef struct {
      mach_msg_header_t header;
      mach_msg_body_t body;
    } mach_msg_base_t;
     
    typedef struct {
      mach_msg_bits_t msgh_bits;
      mach_msg_size_t msgh_size;
      mach_port_t msgh_remote_port;
      mach_port_t msgh_local_port;
      mach_port_name_t msgh_voucher_port;
      mach_msg_id_t msgh_id;
    } mach_msg_header_t;
    

    一条Mach消息实际上就是一个二进制数据包(BLOB),其头部定义了当前端口local_prot和目前端口remote_port。发送和接受消息是通过同一个API进行的,其option标记了消息传递的方向

    mach_msg_return_t mach_msg(
                mach_msg_header_t *msg,
                mach_msg_option_t option,
                mach_msg_size_t send_size,
                mach_msg_size_t rcv_size,
                mach_port_name_t rcv_name,
                mach_msg_timeout_t timeout,
                mach_port_name_t notify);
    

    为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:

    image.png

    有些概念可以参考维基百科 System_callTrap_computing

    RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。

    关于具体的如何利用 mach port 发送信息,可以看看 NSHipster 这一篇文章,或者这里的中文翻译 。

    2. 苹果用RunLoop实现的功能

    首先我们可以看一下 App 启动后 RunLoop 的状态:

    CFRunLoop {
        current mode = kCFRunLoopDefaultMode
        common modes = {
            UITrackingRunLoopMode
            kCFRunLoopDefaultMode
        }
     
        common mode items = {
     
            // source0 (manual)
            CFRunLoopSource {order =-1, {
                callout = _UIApplicationHandleEventQueue}}
            CFRunLoopSource {order =-1, {
                callout = PurpleEventSignalCallback }}
            CFRunLoopSource {order = 0, {
                callout = FBSSerialQueueRunLoopSourceHandler}}
     
            // source1 (mach port)
            CFRunLoopSource {order = 0,  {port = 17923}}
            CFRunLoopSource {order = 0,  {port = 12039}}
            CFRunLoopSource {order = 0,  {port = 16647}}
            CFRunLoopSource {order =-1, {
                callout = PurpleEventCallback}}
            CFRunLoopSource {order = 0, {port = 2407,
                callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}}
            CFRunLoopSource {order = 0, {port = 1c03,
                callout = __IOHIDEventSystemClientAvailabilityCallback}}
            CFRunLoopSource {order = 0, {port = 1b03,
                callout = __IOHIDEventSystemClientQueueCallback}}
            CFRunLoopSource {order = 1, {port = 1903,
                callout = __IOMIGMachPortPortCallback}}
     
            // Ovserver
            CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry
                callout = _wrapRunLoopWithAutoreleasePoolHandler}
            CFRunLoopObserver {order = 0, activities = 0x20,          // BeforeWaiting
                callout = _UIGestureRecognizerUpdateObserver}
            CFRunLoopObserver {order = 1999000, activities = 0xa0,    // BeforeWaiting | Exit
                callout = _afterCACommitHandler}
            CFRunLoopObserver {order = 2000000, activities = 0xa0,    // BeforeWaiting | Exit
                callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
            CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit
                callout = _wrapRunLoopWithAutoreleasePoolHandler}
     
            // Timer
            CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0,
                next fire date = 453098071 (-4421.76019 @ 96223387169499),
                callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)}
        },
     
        modes = {
            CFRunLoopMode  {
                sources0 =  { /* same as 'common mode items' */ },
                sources1 =  { /* same as 'common mode items' */ },
                observers = { /* same as 'common mode items' */ },
                timers =    { /* same as 'common mode items' */ },
            },
     
            CFRunLoopMode  {
                sources0 =  { /* same as 'common mode items' */ },
                sources1 =  { /* same as 'common mode items' */ },
                observers = { /* same as 'common mode items' */ },
                timers =    { /* same as 'common mode items' */ },
            },
     
            CFRunLoopMode  {
                sources0 = {
                    CFRunLoopSource {order = 0, {
                        callout = FBSSerialQueueRunLoopSourceHandler}}
                },
                sources1 = (null),
                observers = {
                    CFRunLoopObserver >{activities = 0xa0, order = 2000000,
                        callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
                )},
                timers = (null),
            },
     
            CFRunLoopMode  {
                sources0 = {
                    CFRunLoopSource {order = -1, {
                        callout = PurpleEventSignalCallback}}
                },
                sources1 = {
                    CFRunLoopSource {order = -1, {
                        callout = PurpleEventCallback}}
                },
                observers = (null),
                timers = (null),
            },
            
            CFRunLoopMode  {
                sources0 = (null),
                sources1 = (null),
                observers = (null),
                timers = (null),
            }
        }
    }
    

    可以看出,系统默认注册了5个Mode

    • kCFRunLoopDefaultMode App的默认Mode,通常主线程是在这个Mode下运行的。
    • UITrackingRunLoopMode 界面跟踪Mode,用于ScrollView追踪触摸滑动,保证界面滑动时不受其他Mode影响。
    • UIInitializationRunLoopMode 在刚启动App时第进入的第一个Mode,启动完成后就不再使用。
    • GSEventReceiveRunLoopMode 接受系统事件的内部Mode,通常用不到。
    • kCFRunLoopCommonModes 这是一个占位的Mode,没有实际作用。

    你可以在这里看到更多的苹果内部的 Mode,但那些 Mode 在开发中就很难遇到了。

    当 RunLoop 进行回调时,一般都是通过一个很长的函数调用出去 (call out), 当你在你的代码中下断点调试时,通常能在调用栈上看到这些函数。下面是这几个函数的整理版本,如果你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:

    /// 1. 通知Observers,即将进入RunLoop
        /// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);
        do {
     
            /// 2. 通知 Observers: 即将触发 Timer 回调。
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);
            /// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
     
            /// 4. 触发 Source0 (非基于port的) 回调。
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
     
            /// 6. 通知Observers,即将进入休眠
            /// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);
     
            /// 7. sleep to wait msg.
            mach_msg() -> mach_msg_trap();
            
     
            /// 8. 通知Observers,线程被唤醒
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);
     
            /// 9. 如果是被Timer唤醒的,回调Timer
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);
     
            /// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block
            __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);
     
            /// 9. 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);
     
     
        } while (...);
     
        /// 10. 通知Observers,即将退出RunLoop
        /// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
    }
    
    2.1 AutoreleasePool

    App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()

    第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

    第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

    在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。

    2.2 事件响应

    苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()

    当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。

    _UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。

    1.3 手势识别

    当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。

    苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是_UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。

    当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。

    1.4 界面更新

    当在操作 UI 时,比如改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。

    苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:
    _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。

    这个函数内部的调用栈大概是如下的

    _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
        QuartzCore:CA::Transaction::observer_callback:
            CA::Transaction::commit();
                CA::Context::commit_transaction();
                    CA::Layer::layout_and_display_if_needed();
                        CA::Layer::layout_if_needed();
                            [CALayer layoutSublayers];
                                [UIView layoutSubviews];
                        CA::Layer::display_if_needed();
                            [CALayer display];
                                [UIView drawRect];
    
    1.5 定时器

    NSTimer 其实就是 CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个 NSTimer 注册到 RunLoop 后,RunLoop 会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20 这几个时间点。RunLoop为了节省资源,并不会在非常准确的时间点回调这个Timer。Timer 有个属性叫做 Tolerance (宽容度),标示了当时间点到后,容许有多少最大误差。

    如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。

    CADisplayLink 是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 相似),造成界面卡顿的感觉。在快速滑动TableView时,即使一帧的卡顿也会让用户有所察觉。Facebook 开源的 AsyncDisplayLink 就是为了解决界面卡顿的问题,其内部也用到了 RunLoop。

    1.6 PerformSelector

    当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。

    当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。

    1.7 关于GCD

    实际上 RunLoop 底层也会用到 GCD 的东西,NSTimer 是用了 XNU 内核的 mk_timer,但同时 GCD 提供的某些接口也用到了 RunLoop, 例如 dispatch_async()。

    当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__() 里执行这个 block。但这个逻辑仅限于 dispatch 到主线程,dispatch 到其他线程仍然是由 libDispatch 处理的。

    1.8 关于网络请求

    iOS 中,关于网络请求的接口自下至上有如下几层:

    CFSocket
    CFNetwork       ->ASIHttpRequest
    NSURLConnection ->AFNetworking
    NSURLSession    ->AFNetworking2, Alamofire
    
    • CFSocket 是最底层的接口,只负责socket通信。
    • CFNetwork 是基于CFSocket等接口的上层封装,ASIHttpRequest工作与这一层。
    • NSURLConnection 是基于CFNetwork的更高层的封装,提供面向对象的接口,AFNetworking工作于这一层。
    • NSURLSession 是iOS7中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了 NSURLConnection 的部分功能 (比如 com.apple.NSURLConnectionLoader 线程),AFNetworking2 和 Alamofire 工作于这一层。

    下面主要介绍下 NSURLConnection 的工作过程。

    通常使用 NSURLConnection 时,你会传入一个 Delegate,当调用了 [connection start] 后,这个 Delegate 就会不停收到事件回调。实际上,start 这个函数的内部会会获取 CurrentRunLoop,然后在其中的 DefaultMode 添加了4个 Source0 (即需要手动触发的Source)。CFMultiplexerSource 是负责各种 Delegate 回调的,CFHTTPCookieStorage 是处理各种 Cookie 的。

    当开始网络传输时,我们可以看到 NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoadercom.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。

    image.png

    NSURLConnectionLoader 中的 RunLoop 通过一些基于 mach port 的 Source 接收来自底层 CFSocket 的通知。当收到通知后,其会在合适的时机向 CFMultiplexerSource 等 Source0 发送通知,同时唤醒 Delegate 线程的 RunLoop 来让其处理这些通知。CFMultiplexerSource 会在 Delegate 线程的 RunLoop 对 Delegate 执行实际的回调。

    3. RunLoop的实际应用举例

    3.1 AFNetworking

    AFURLConnectionOperation这个类是基于NSURLConnection构建的,其期望能在后台线程接收Delegate回调。为此AFNetworking单独创建了一个线程,并在这个线程中启动了一个RunLoop

    + (void)networkRequestThreadEntryPoint:(id)__unused object {
        @autoreleasepool {
            [[NSThread currentThread] setName:@"AFNetworking"];
            NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
            [runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
            [runLoop run];
        }
    }
     
    + (NSThread *)networkRequestThread {
        static NSThread *_networkRequestThread = nil;
        static dispatch_once_t oncePredicate;
        dispatch_once(&oncePredicate, ^{
            _networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
            [_networkRequestThread start];
        });
        return _networkRequestThread;
    }
    

    RunLoop 启动前内部必须要有至少一个 Timer/Observer/Source,所以 AFNetworking 在 [runLoop run] 之前先创建了一个新的 NSMachPort 添加进去了。通常情况下,调用者需要持有这个 NSMachPort (mach_port) 并在外部线程通过这个 port 发送消息到 loop 内;但此处添加 port 只是为了让 RunLoop 不至于退出,并没有用于实际的发送消息。

    - (void)start {
        [self.lock lock];
        if ([self isCancelled]) {
            [self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
        } else if ([self isReady]) {
            self.state = AFOperationExecutingState;
            [self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
        }
        [self.lock unlock];
    }
    

    当需要这个后台线程执行任务时,AFNetworking 通过调用 ```[NSObject performSelector:onThread:withObject:waitUntilDone:modes:] ``将这个任务扔到了后台线程的 RunLoop 中。

    3.1 AsyncDisplayKit

    AsyncDisplayKit 是 Facebook 推出的用于保持界面流畅性的框架,其原理大致如下:

    UI 线程中一旦出现繁重的任务就会导致界面卡顿,这类任务通常分为3类:排版,绘制,UI对象操作。

    • 排版通常包括计算视图大小,计算文本高度,重新计算子视图的排版等操作。
    • 绘制一般有文本绘制(如CoreText),图片绘制(例如预先解压),元素绘制(Quqrtz)等操作。
    • UI对象通常包括UIView/CALayer等UI对象的创建,设置属性和销毁。

    其中前两类操作可以通过各种方法扔到后台线程执行,而最后一类操作只能在主线程完成,并且有时后面的操作需要依赖前面操作的结果 (例如TextView创建时可能需要提前计算出文本的大小)。ASDK 所做的,就是尽量将能放入后台的任务放入后台,不能的则尽量推迟 (例如视图的创建、属性的调整)。

    为此,ASDK 创建了一个名为 ASDisplayNode 的对象,并在内部封装了 UIView/CALayer,它具有和 UIView/CALayer 相似的属性,例如 frame、backgroundColor等。所有这些属性都可以在后台线程更改,开发者可以只通过 Node 来操作其内部的 UIView/CALayer,这样就可以将排版和绘制放入了后台线程。但是无论怎么操作,这些属性总需要在某个时刻同步到主线程的 UIView/CALayer 去。

    ASDK 仿照 QuartzCore/UIKit 框架的模式,实现了一套类似的界面更新的机制:即在主线程的 RunLoop 中添加一个 Observer,监听了 kCFRunLoopBeforeWaitingkCFRunLoopExit 事件,在收到回调时,遍历所有之前放入队列的待处理的任务,然后一一执行。
    具体的代码可以看这里:_ASAsyncTransactionGroup


    最后声明,本文绝大部分是参考作者Garan no Dou深入理解RunLoop,非常感谢该作者,该作者的阅读和编写代码功底很强。而且里面做了大量的注释和说明,看完后学习到很多东西,为了理解更加深刻,所以以它为模板,自己写了一篇博客,目的是在加深记忆的同时,是否可以发现些不足之处,如有侵权,请告知,万分感谢。


    相关文章

      网友评论

        本文标题:iOS - 深入理解 RunLoop

        本文链接:https://www.haomeiwen.com/subject/bdrguftx.html