美文网首页
从官方示例看OkHttp——OkHttp 3.9.1 源码浅析

从官方示例看OkHttp——OkHttp 3.9.1 源码浅析

作者: 叮咚象JC | 来源:发表于2018-03-07 14:30 被阅读14次

    年后就是跳槽的高峰期,年前参加了几场面试,基本上都会问对于常用的第三方框架的了解,由于之前主要从事系统开发的工作,所以对于常用的网络框架不是很了解。借此机会学习总结一下OkHttp网络请求框架。
    本文从官方提供的示例入手,尝试分析学习OkHttp框架(3.9.1版本)的源码,

    OkHttp简介

    An HTTP & HTTP/2 client for Android and Java applications

    根据官网介绍,OkHttp是一个用于java和Android的HTTP&HTTP/2请求的客户端。
    而在Android系统的原生库类中,有两个用于http请求的库类,在Android2.2之前,推荐使用HttpClient,而在Android2.2之后推荐使用HttpURLConnection。

    优点

    相比于官方的原生网络请求库,OkHttp有以下优点:

    1. 支持HTTP/2, HTTP/2通过使用多路复用技术在一个单独的TCP连接上支持并发,通过在一个连接上一次性发送多个请求来发送或接收数据
    2. 通过连接池复用技术(Http)减少延时
    3. 支持Gzip降低下载大小
    4. 支持响应缓存避免了重复请求的网络

    get流程

    官方示例

    //1.创建OkHttpClient
    OkHttpClient client = new OkHttpClient();
    
    //2.创建Request,并填入url信息
    String run(String url) throws IOException {
      Request request = new Request.Builder()
          .url(url)
          .build();
    
      //3.通过OkHttpClient的newcall进行同步请求
      Response response = client.newCall(request).execute();
      //4.返回请求结果
      return response.body().string();
    }
    

    流程分析

    1.创建OkHttpClient

    构建了一个OkHttpClient

    //1.创建OkHttpClient
    OkHttpClient client = new OkHttpClient();
    
    public OkHttpClient() {
        //通过默认builder构建一个新的OkHttpClient
        this(new Builder());
      }
      
    
    //初始化builder用于配置各种参数
    public Builder() {
          //异步请求的执行策略调度器
          dispatcher = new Dispatcher();
          //默认的协议列表
          protocols = DEFAULT_PROTOCOLS;
          //默认的连接规范
          connectionSpecs = DEFAULT_CONNECTION_SPECS;
          //指标事件的监听器
          eventListenerFactory = EventListener.factory(EventListener.NONE);
          //默认的代理选择器
          proxySelector = ProxySelector.getDefault();
          //默认不管理cookie
          cookieJar = CookieJar.NO_COOKIES;
          //默认的socket工厂
          socketFactory = SocketFactory.getDefault();
          //默认的主机名验证
          hostnameVerifier = OkHostnameVerifier.INSTANCE;
          //固定证书,默认不开启
          certificatePinner = CertificatePinner.DEFAULT;
          //响应服务器身份验证质询,默认不进行响应
          proxyAuthenticator = Authenticator.NONE;
          authenticator = Authenticator.NONE;
          //初始化连接池
          connectionPool = new ConnectionPool();
          //默认DNS
          dns = Dns.SYSTEM;
          followSslRedirects = true;
          followRedirects = true;
          retryOnConnectionFailure = true;
          //超时时间
          connectTimeout = 10_000;
          readTimeout = 10_000;
          writeTimeout = 10_000;
          pingInterval = 0;
        }
    

    2.创建Request,并填入url信息

    通过构造器模式创建Request对象

    //2.创建Request,并填入url信息
    String run(String url) throws IOException {
        Request request = new Request.Builder()
          .url(url)
          .build();
    

    首先通过Builder()方法构建一个Builder对象

    //Builder 
    public Builder() {
          //默认方法为get
          this.method = "GET";
          //初始化一个空的请求头
          this.headers = new Headers.Builder();
        }
    

    然后通过url(url)方法对url进行了设置

    public Builder url(String url) {
          //检测传入的url是否为空
          if (url == null) throw new NullPointerException("url == null");
    
          //将socket url替换为Http url
          if (url.regionMatches(true, 0, "ws:", 0, 3)) {
            url = "http:" + url.substring(3);
          } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
            url = "https:" + url.substring(4);
          }
    
          //根据传入的url生成一个HttpUrl
          HttpUrl parsed = HttpUrl.parse(url);
          //如果为空则说明传入的不是一个格式正确的http/https url
          if (parsed == null) throw new IllegalArgumentException("unexpected url: " + url);
          //将http传入url,返回Builder
          return url(parsed);
        }
    
    //将传入的HttpUrl赋值为成员变量后返回Builder
    public Builder url(HttpUrl url) {
          if (url == null) throw new NullPointerException("url == null");
          this.url = url;
          return this;
        }
    

    最后调用build()方法完成Request的创建

    public Request build() {
          //检测url是否为空,若为空则抛出异常
          if (url == null) throw new IllegalStateException("url == null");
          return new Request(this);
        }
        
    //Request
    Request(Builder builder) {
        //请求地址
        this.url = builder.url;
        //请求方法
        this.method = builder.method;
        //请求头
        this.headers = builder.headers.build();
        //请求体
        this.body = builder.body;
        //tag标记,可用来统一删除
        this.tag = builder.tag != null ? builder.tag : this;
      }
    

    可见url是创建Request时不可缺少的一个部分,一个Request中必须填入其url
    而Request中包换五个部分,除tag外分别与Http请求中的请求地址、请求方法、请求头和请求体四部分别对应。至于Http请求所需的请求协议,Okhttp是通过使用请求协议的协商升级来进行确定的。

    3.通过OkHttpClient的newcall进行同步请求

    第三步是整个网络请求中的重中之重,它通过对我们的Request进行解析生成相应的call来获取我们所需的Response。

    Response response = client.newCall(request).execute();
    

    首先通过newCall(request)方法根据请求创建了一个call

    @Override public Call newCall(Request request) {
        return RealCall.newRealCall(this, request, false /* for web socket */);
      }
    
    
    static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
        //传入参数生成Realcall
        RealCall call = new RealCall(client, originalRequest, forWebSocket);
        //为生成call创建一个eventListener实例,用于监听请求的各个阶段
        call.eventListener = client.eventListenerFactory().create(call);
        return call;
      }
    
    //三个参数分别对应之前创建的OkHttpClient,传入的Request,已经是否为WebSocket此时为false
    private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
        //将传入的参数赋值给对应的变量
        this.client = client;
        this.originalRequest = originalRequest;
        this.forWebSocket = forWebSocket;
        //生成一个RetryAndFollowUpInterceptor,用于失败重试以及重定向
        this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
      }
    

    然后通过execute()进行同步请求

    @Override public Response execute() throws IOException {
        synchronized (this) {
          //如果该请求正在运行抛出异常,否则将运行标志位置为true,防止重复请求
          if (executed) throw new IllegalStateException("Already Executed");
          executed = true;
        }
        //捕获调用堆栈的跟踪
        captureCallStackTrace();
        //告知eventlisten请求开始
        eventListener.callStart(this);
        try {
          //通过dispatcher的executed来实际执行
          client.dispatcher().executed(this);
          //经过一系列"拦截"操作后获取结果
          Response result = getResponseWithInterceptorChain();
          //如果result为空抛出异常
          if (result == null) throw new IOException("Canceled");
          return result;
        } catch (IOException e) {
          //告知eventlisten请求失败
          eventListener.callFailed(this, e);
          throw e;
        } finally {
          //通知dispatcher执行完毕
          client.dispatcher().finished(this);
        }
      }
    

    在这一步中 client.dispatcher().executed(this) 仅仅是将call加入一个队列,并没有真正开始进行网络请求

    synchronized void executed(RealCall call) {
        runningSyncCalls.add(call);
      }
    

    真正开始进行网络请求的方法是getResponseWithInterceptorChain(),这也是此次网络请求中最为重要的一个方法

    Response getResponseWithInterceptorChain() throws IOException {
        //创建一个拦截器数组用于存放各种拦截器
        List<Interceptor> interceptors = new ArrayList<>();
        //向数组中添加用户自定义的拦截器
        interceptors.addAll(client.interceptors());
        //1.向数组中添加retryAndFollowUpInterceptor用于失败重试和重定向 
        interceptors.add(retryAndFollowUpInterceptor);
        //2.向数组中添加BridgeInterceptor用于把用户构造的请求转换为发送给服务器的请求,把服务器返回的响应转换为对用户友好的响应。
        interceptors.add(new BridgeInterceptor(client.cookieJar()));
        //3.向数组中添加CacheInterceptor用于读取缓存以及更新缓存
        interceptors.add(new CacheInterceptor(client.internalCache()));
        //4.向数组中添加ConnectInterceptor用于与服务器建立连接
        interceptors.add(new ConnectInterceptor(client));
        //如果不是webSocket添加networkInterceptors
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        //5.向数组中添加CallServerInterceptor用于从服务器读取响应的数据
        interceptors.add(new CallServerInterceptor(forWebSocket));
        //根据上述的拦截器数组生成一个拦截链
        Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
            originalRequest, this, eventListener, client.connectTimeoutMillis(),
            client.readTimeoutMillis(), client.writeTimeoutMillis());
        //通过拦截链的proceed方法开始整个拦截链事件的传递
        return chain.proceed(originalRequest);
      }
    

    在getResponseWithInterceptorChain()方法中我们可以发现有许多不同功能的拦截器,主要列举一下默认已经实现的几个拦截器的作用:

    1. retryAndFollowUpInterceptor 负责失败重试和重定向
    2. BridgeInterceptor 负责把用户构造的请求转换为发送给服务器的请求,把服务器返回的响应转换为对用户友好的响应。
    3. CacheInterceptor 负责读取缓存以及更新缓存
    4. ConnectInterceptor 负责建立连接
    5. CallServerInterceptor 负责发送和读取数据

    而这些拦截器的具体实现我们后续在看,按照流程在这个方法中通过new RealInterceptorChain()生成了一个拦截链,然后通过它proceed()方法开始运行这条拦截链

    //RealInterceptorChain的构造函数主要是将传入的参数用变量记录下来,其中的index参数用来记录当前的拦截器
    public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
          HttpCodec httpCodec, RealConnection connection, int index, Request request, Call call,
          EventListener eventListener, int connectTimeout, int readTimeout, int writeTimeout) {
        this.interceptors = interceptors;
        this.connection = connection;
        this.streamAllocation = streamAllocation;
        this.httpCodec = httpCodec;
        this.index = index;
        this.request = request;
        this.call = call;
        this.eventListener = eventListener;
        this.connectTimeout = connectTimeout;
        this.readTimeout = readTimeout;
        this.writeTimeout = writeTimeout;
      }
      
      //调用proceed传入request
      @Override public Response proceed(Request request) throws IOException {
        //在本例中streamAllocation、httpCodec、connection均为null
        return proceed(request, streamAllocation, httpCodec, connection);
      }
    
      public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
          RealConnection connection) throws IOException {
        //当index大于拦截器数组的大小时抛出异常
        if (index >= interceptors.size()) throw new AssertionError();
    
        calls++;
    
        // If we already have a stream, confirm that the incoming request will use it.
        if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
          throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
              + " must retain the same host and port");
        }
    
        // If we already have a stream, confirm that this is the only call to chain.proceed().
        if (this.httpCodec != null && calls > 1) {
          throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
              + " must call proceed() exactly once");
        }
    
        // Call the next interceptor in the chain.
        // 实例化下一个拦截器的拦截链
        RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
            connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
            writeTimeout);
        //获取当前的拦截器
        Interceptor interceptor = interceptors.get(index);
        //调用当前拦截器的intercept(),并传入下一个拦截器的拦截链
        Response response = interceptor.intercept(next);
    
        // Confirm that the next interceptor made its required call to chain.proceed().
        if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
          throw new IllegalStateException("network interceptor " + interceptor
              + " must call proceed() exactly once");
        }
    
        // Confirm that the intercepted response isn't null.
        if (response == null) {
          throw new NullPointerException("interceptor " + interceptor + " returned null");
        }
    
        if (response.body() == null) {
          throw new IllegalStateException(
              "interceptor " + interceptor + " returned a response with no body");
        }
    
        return response;
      }
    

    每个拦截器的intercept()方法各不相同,下面按照前文的添加顺序具体分析其实现与功能
    1.RetryAndFollowUpInterceptor

    @Override public Response intercept(Chain chain) throws IOException {
        //从传入拦截链中获取request、call、eventListener
        Request request = chain.request();
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        Call call = realChain.call();
        EventListener eventListener = realChain.eventListener();
    
        //创建一个StreamAllocation,传递给后面的拦截链,用于管理Connections、Streams、Calls三者之间的关系
        streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(request.url()),
            call, eventListener, callStackTrace);
    
        //记录重试次数
        int followUpCount = 0;
        Response priorResponse = null;
        //开启循环
        while (true) {
          //判断是否取消,如果取消则通过streamAllocation释放连接并抛出IOException
          if (canceled) {
            streamAllocation.release();
            throw new IOException("Canceled");
          }
    
          Response response;
          boolean releaseConnection = true;
          try {
            //调用传入的拦截链的proceed方法,执行下一个拦截器,捕获抛出的异常并进行处理
            response = realChain.proceed(request, streamAllocation, null, null);
            releaseConnection = false;
          } catch (RouteException e) {
            //捕获到路由寻址异常,判断是否要恢复,否的话抛出异常
            // The attempt to connect via a route failed. The request will not have been sent.
            if (!recover(e.getLastConnectException(), false, request)) {
              throw e.getLastConnectException();
            }
            releaseConnection = false;
            continue;
          } catch (IOException e) {
             //捕获到IO异常,判断是否要恢复,否的话抛出异常
            // An attempt to communicate with a server failed. The request may have been sent.
            boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
            if (!recover(e, requestSendStarted, request)) throw e;
            releaseConnection = false;
            continue;
          } finally {
            // We're throwing an unchecked exception. Release any resources.
            //根据标志位releaseConnection判断是否需要释放连接
            if (releaseConnection) {
              streamAllocation.streamFailed(null);
              streamAllocation.release();
            }
          }
    
          // Attach the prior response if it exists. Such responses never have a body.
          if (priorResponse != null) {
            response = response.newBuilder()
                .priorResponse(priorResponse.newBuilder()
                        .body(null)
                        .build())
                .build();
          }
    
          //根据response来生成一个Request对象用于重定向和重连
          Request followUp = followUpRequest(response);
    
          //如果followUp为空,则说明无须重连或重定向,直接释放连接返回response
          if (followUp == null) {
            if (!forWebSocket) {
              streamAllocation.release();
            }
            return response;
          }
    
          //调用ResponseBody的close方法,关闭stream和相关资源
          closeQuietly(response.body());
    
          //重连次数高于限定次数(20)直接释放连接抛出异常
          if (++followUpCount > MAX_FOLLOW_UPS) {
            streamAllocation.release();
            throw new ProtocolException("Too many follow-up requests: " + followUpCount);
          }
    
          //Request的请求体属于不可重复提交的请求体则关闭连接抛出异常
          if (followUp.body() instanceof UnrepeatableRequestBody) {
            streamAllocation.release();
            throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
          }
    
          //是否是同一连接
          if (!sameConnection(response, followUp.url())) {
            streamAllocation.release();
            streamAllocation = new StreamAllocation(client.connectionPool(),
                createAddress(followUp.url()), call, eventListener, callStackTrace);
          } else if (streamAllocation.codec() != null) {
            throw new IllegalStateException("Closing the body of " + response
                + " didn't close its backing stream. Bad interceptor?");
          }
    
          request = followUp;
          priorResponse = response;
        }
      }
    

    上述代码即为RetryAndFollowUpInterceptor intercept的实现流程,它主要负责失败重试和重定向。简化流程如下:

    1. 实例化StreamAllocation传入到接下来的拦截链中
    2. 开启循环,执行下一个调用链(拦截器),等待响应(Response)
    3. 如果等待响应(Response)的过程中抛出异常,根据异常决定是否进行重连或重定向,否:退出
    4. 根据响应生成的followUp决定是否进行重连或重定向,否:返回响应(Response)
    5. 关闭响应结果
    6. 判断重连数是否达到最大值,是:释放连接、退出
    7. 判断followUp的请求体是否能重复提交,否:释放连接、退出
    8. 检测是否为相同连接,否:重新实例化StreamAllocation
    9. 循环以上步骤

    2.BridgeInterceptor
    根据拦截链的proceed方法可知,会调用到BridgeInterceptor的intercept()方法

    @Override public Response intercept(Chain chain) throws IOException {
        //从传入拦截链中获取request以及requestBuilder
        Request userRequest = chain.request();
        Request.Builder requestBuilder = userRequest.newBuilder();
    
        //获取request的请求体,若不为空则添加部分请求头信息
        RequestBody body = userRequest.body();
        if (body != null) {
          MediaType contentType = body.contentType();
          if (contentType != null) {
            //添加contentType
            requestBuilder.header("Content-Type", contentType.toString());
          }
    
          //根据contentLength确定添加Content-Length还是Transfer-Encoding
          long contentLength = body.contentLength();
          if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
          } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
          }
        }
    
        //若无自定义host,添加默认host
        if (userRequest.header("Host") == null) {
          requestBuilder.header("Host", hostHeader(userRequest.url(), false));
        }
    
        //若无自定义Connection,添加默认Connection(Keep-Alive)
        if (userRequest.header("Connection") == null) {
          requestBuilder.header("Connection", "Keep-Alive");
        }
    
        // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
        // the transfer stream.
        boolean transparentGzip = false;
        if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
          transparentGzip = true;
          requestBuilder.header("Accept-Encoding", "gzip");
        }
    
        //如果在创建OKHttpClient时创建的cookieJar不为NO_COOKIE,且cookie不为空则添加Cookie
        List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
        if (!cookies.isEmpty()) {
          requestBuilder.header("Cookie", cookieHeader(cookies));
        }
    
        //若User-Agent为空,则添加默认User-Agent,默认为OkHttp版本号,该例为okhttp/3.9.1
        if (userRequest.header("User-Agent") == null) {
          requestBuilder.header("User-Agent", Version.userAgent());
        }
    
        //初始化添加了头信息的request并传入下一个拦截链中
        Response networkResponse = chain.proceed(requestBuilder.build());
    
        //请求完成后,根据返回的response存储cookies(如果需要,否则该方法不作任何操作)
        HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
        Response.Builder responseBuilder = networkResponse.newBuilder()
            .request(userRequest);
    
       //判断服务器是否支持gzip压缩格式,如果支持则交给kio压缩
        if (transparentGzip
            && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
            && HttpHeaders.hasBody(networkResponse)) {
          GzipSource responseBody = new GzipSource(networkResponse.body().source());
          Headers strippedHeaders = networkResponse.headers().newBuilder()
              .removeAll("Content-Encoding")
              .removeAll("Content-Length")
              .build();
          responseBuilder.headers(strippedHeaders);
          String contentType = networkResponse.header("Content-Type");
          responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
        }
    
        //返回处理后的response
        return responseBuilder.build();
      }
    
    

    上述代码就是BridgeInterceptor intercept的实现流程,它主要用于负责把用户构造的请求转换为发送给服务器的请求,把服务器返回的响应转换为对用户友好的响应。简化流程如下:

    1. 根据request信息,为请求添加头信息
    2. 将封装好的request传入下一个拦截链,并返回Response
    3. 根据返回的response进行cookie、Gzip处理
    4. 返回处理好的Gzip

    3.CacheInterceptor

    @Override public Response intercept(Chain chain) throws IOException {
        //读取配置中的候选缓存,读取序列依次为OkHttpClient中的cache、internalCache和null。
        Response cacheCandidate = cache != null
            ? cache.get(chain.request())
            : null;
    
        long now = System.currentTimeMillis();
    
        //根据cacheCandidate创建缓存策略
        CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
        Request networkRequest = strategy.networkRequest;
        Response cacheResponse = strategy.cacheResponse;
    
        //缓存监测
        if (cache != null) {
          cache.trackResponse(strategy);
        }
    
        //若未找到合适的缓存关闭stream和相关资源
        if (cacheCandidate != null && cacheResponse == null) {
          closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
        }
    
        //若根据缓存策略,不适用网络请求即networkRequest为null,且无相应缓存,即cacheResponse为null,直接报错返回504
        // If we're forbidden from using the network and the cache is insufficient, fail.
        if (networkRequest == null && cacheResponse == null) {
          return new Response.Builder()
              .request(chain.request())
              .protocol(Protocol.HTTP_1_1)
              .code(504)
              .message("Unsatisfiable Request (only-if-cached)")
              .body(Util.EMPTY_RESPONSE)
              .sentRequestAtMillis(-1L)
              .receivedResponseAtMillis(System.currentTimeMillis())
              .build();
        }
    
        //若不使用网络,缓存有效。直接返回缓存的Response
        // If we don't need the network, we're done.
        if (networkRequest == null) {
          return cacheResponse.newBuilder()
              .cacheResponse(stripBody(cacheResponse))
              .build();
        }
    
        //若需要使用网络则通过拦截链启动下一个拦截器发起网络请求
        Response networkResponse = null;
        try {
          networkResponse = chain.proceed(networkRequest);
        } finally {
          // If we're crashing on I/O or otherwise, don't leak the cache body.
          if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
          }
        }
    
        //当本地有缓存
        // If we have a cache response too, then we're doing a conditional get.
        if (cacheResponse != null) {
          //网络请求返回304,即缓存数据未过期,根据本地缓存响应和网络请求响应生成Response
          if (networkResponse.code() == HTTP_NOT_MODIFIED) {
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
                .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();
    
            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
          } else {
            //否则缓存数据过期,关闭缓存。
            closeQuietly(cacheResponse.body());
          }
        }
    
        //根据网络请求返回的数据生成response
        Response response = networkResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        //如果需要OKHttpClient需要使用缓存
        if (cache != null) {
          //如果response存在body且允许缓存,则进行本地化缓存
          if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
            // Offer this request to the cache.
            CacheRequest cacheRequest = cache.put(response);
            return cacheWritingResponse(cacheRequest, response);
          }
    
          //有的请求方法会使缓存无效,此时清除缓存
          if (HttpMethod.invalidatesCache(networkRequest.method())) {
            try {
              cache.remove(networkRequest);
            } catch (IOException ignored) {
              // The cache cannot be written.
            }
          }
        }
    
        //返回响应
        return response;
      }
    

    上述代码即为CacheInterceptor的intercept()方法的运行流程,主要负责读取缓存以及更新缓存,简化流程如下:

    1. 读取OkhttpClient配置缓存,可能为null
    2. 生成相应的缓存策略
    3. 根据缓存策略如果不使用网络且无相应缓存,则直接返回504
    4. 根据缓存策略如果不使用网络但相应缓存,则直接返回缓存响应
    5. 根据缓存策略如果使用网络,则通过拦截链启动下一个拦截器发起网络请求
    6. 根据网络响应,确定缓存是否过期,若未过期(返回304)则返回缓存
    7. 如果缓存过期,关闭缓存并生成网络请求的response
    8. 根据缓存要求进行本地缓存
    9. 返回网络请求的response

    4.ConnectInterceptor 负责建立连接

    @Override public Response intercept(Chain chain) throws IOException {
        //从传入的拦截链中获取request和streamAllocation(RetryAndFollowUpInterceptor中初始化传入)
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        Request request = realChain.request();
        StreamAllocation streamAllocation = realChain.streamAllocation();
    
        // We need the network to satisfy this request. Possibly for validating a conditional GET.
        boolean doExtensiveHealthChecks = !request.method().equals("GET");
        //初始化HttpCodec,在newStream方法中会通过findHealthyConnection()方法依次尝试从当前连接、连接池、其他线路的连接池、新建连接的顺序中获取到RealConnection,然后通过RealConnection的newCodec方法分别根据Http2、Http协议生成httpCodec
        HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
        //获取RealConnection
        RealConnection connection = streamAllocation.connection();
    Connection
        //通过拦截链启动下一个拦截器,并将httpCodec和connection传入
        return realChain.proceed(request, streamAllocation, httpCodec, connection);
      }
    

    上述代码即为ConnectInterceptor的intercept()方法的运行流程,负责连接的建立,简化流程如下:

    1. 读取OkhttpClient配置request和streamAllocation
    2. 初始化HttpCodec
    3. 获取RealConnection
    4. 通过拦截链启动下一个拦截器,并将2、3步的对象传入

    5.CallServerInterceptor

    @Override public Response intercept(Chain chain) throws IOException {
        // 通过拦截链获取在ConnectInterceptor中完成初始化的HttpCodec和RealConnection,以及streamAllocation和request
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        HttpCodec httpCodec = realChain.httpStream();
        StreamAllocation streamAllocation = realChain.streamAllocation();
        RealConnection connection = (RealConnection) realChain.connection();
        Request request = realChain.request();
    
        long sentRequestMillis = System.currentTimeMillis();
        //通知eventListener
        realChain.eventListener().requestHeadersStart(realChain.call());
        //写请求头
        httpCodec.writeRequestHeaders(request);
        realChain.eventListener().requestHeadersEnd(realChain.call(), request);
    
        Response.Builder responseBuilder = null;
        //若请求方法允许传输请求体,且request的请求体不为空
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
          //如果在请求头中存在"Expect:100-continue",说明该请求需要等待服务器回复是否能够处理请求体,服务器若不接受请求体则会返回一个非空的编码
          if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
            httpCodec.flushRequest();
            realChain.eventListener().responseHeadersStart(realChain.call());
            //接收服务器的返回请求,服务器若不接受请求体则会返回一个非空的响应
            responseBuilder = httpCodec.readResponseHeaders(true);
          }
    
          //若responseBuilder为null,则Expect不为100-continue或服务器接收请求体,开始写入请求体
          if (responseBuilder == null) {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            realChain.eventListener().requestBodyStart(realChain.call());
            long contentLength = request.body().contentLength();
            CountingSink requestBodyOut =
                new CountingSink(httpCodec.createRequestBody(request, contentLength));
            BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
    
            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
            realChain.eventListener()
                .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
          } else if (!connection.isMultiplexed()) {
            // 如果服务器拒绝接收请求体,且不是http2,则禁止此连接被重新使用
            streamAllocation.noNewStreams();
          }
        }
    
        //完成请求写入
        httpCodec.finishRequest();
    
        //通过httpCodec获取响应头
        if (responseBuilder == null) {
          realChain.eventListener().responseHeadersStart(realChain.call());
          responseBuilder = httpCodec.readResponseHeaders(false);
        }
    
        //通过responseBuilder填入信息创建Response
        Response response = responseBuilder
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    
        realChain.eventListener()
            .responseHeadersEnd(realChain.call(), response);
    
        //获取返回码
        int code = response.code();
        //如果是101(升级到Http2协议),则返回一个EMPTY_RESPONSE的响应体
        if (forWebSocket && code == 101) {
          // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
          response = response.newBuilder()
              .body(Util.EMPTY_RESPONSE)
              .build();
        } else {
          //写入服务器返回的响应体
          response = response.newBuilder()
              .body(httpCodec.openResponseBody(response))
              .build();
        }
    
        //若请求或者服务器要求断开连接,则断开
        if ("close".equalsIgnoreCase(response.request().header("Connection"))
            || "close".equalsIgnoreCase(response.header("Connection"))) {
          streamAllocation.noNewStreams();
        }
    
        //若返回204/205(服务器均未返回响应体)且响应体长度大于)则抛出异常
        if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
          throw new ProtocolException(
              "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
        }
    
        //返回响应
        return response;
      }
    

    上述代码即为CallServerInterceptor的intercept()方法的运行流程,负责发送请求数据和读取响应数据,简化流程如下:

    1. 读取HttpCodec、RealConnection等对象
    2. 写入请求头
    3. 若需要(由请求方法和服务器决定),写入请求体
    4. 读取响应头信息
    5. 若请求或响应要求断开连接,则断开连接
    6. 根据响应码读取响应体
    7. 处理204/205的异常情况
    8. 返回响应

    至此默认的五个拦截器的实现和功能都已经分析完了,但由于篇幅有限,所以其中有些对象并没有深入分析,如streamAllocation、HttpCodec等

    4.获取Response的响应结果

      //4.返回请求结果
      return response.body().string();
    

    此时的response就是第三步中通过newCall获取到的response

    public @Nullable ResponseBody body() {
        return body;
      }
    
    //以Content-Type标头的字符集解码的字符串形式返回响应,若未标明则用UTF-8
    public final String string() throws IOException {
        BufferedSource source = source();
        try {
          Charset charset = Util.bomAwareCharset(source, charset());
          return source.readString(charset);
        } finally {
          Util.closeQuietly(source);
        }
      }
    

    结语

    本篇分析了官方示例中get操作的流程,最大的特点则在于通过拦截器链来实现责任链链,从而完成整个网络请求的流程。
    本篇文章是个人学习的总结,本人能力有限,如果有错误欢迎斧正,谢谢。

    相关文章

      网友评论

          本文标题:从官方示例看OkHttp——OkHttp 3.9.1 源码浅析

          本文链接:https://www.haomeiwen.com/subject/beujfftx.html