前面我们已经阅读了上周五,Vitalik 7月21日发表的论文《STARKSIII:Into the Weeds》上半部分。以下为该论文下半部分:
STARKs III: Into the Weeds(下)
感谢上帝,今天是FRI日(即“快速里所码接近性 交互预言证明(Fast Reed-Solomon Interactive Oracle Proofs of Proximity)”)
提醒:现在可能是审阅和重读本系列第2部分[1]的好时机。
现在,我们来探讨创建低次证明的代码[2]。首先回顾一下,低次证明是一个概率性证明,即给定值集合中占足够高百分比(例如80%)的部分表示某一特定多项式的值,其中,该多项式的次数远低于给定值的数量 。直观上,我们只需将其视为一个“我们声称代表多项式的某个默克尔根确实代表了某个多项式,当然,其中可能会有一些误差”的证明。作为输入,我们有:
-
一个我们声称是低次多项式的值的值集合
-
单位根;被求值多项式的x坐标是该单位根的连续幂
-
一个使得我们证明多项式的次数严格小于N的值N
-
模数
-
我们采用递归的方法,有两种情况。首先,如果次数足够低,我们只需提供完整的值列表作为证明,这是“基本情况”。对基本情况的验证十分简单:进行FFT或拉格朗日插值或其它对表示这些值的多项式插值,并验证其次数小于N的方法。否则,如果次数高于某个设定的最小值,我们将进行第2部分最后17介绍的垂线 –对角线技巧。
我们首先将值放入默克尔树中,并使用默克尔根来选择伪随机x坐标(special_x)。然后我们计算“列”:
# 计算x坐标的集合
xs = get_power_cycle(root_of_unity, modulus)
column = []
for i in range(len(xs)//4):
x_poly = f.lagrange_interp_4(
[xs[i+len(xs)*j//4] for j in range(4)],
[values[i+len(values)*j//4] for j in range(4)],
)
column.append(f.eval_poly_at(x_poly, special_x))
)
这短短几行代码包含了很多内容。其宽泛的想法是将多项式 P(x) 重新演绎为多项式Q(x, y),其中P(x) = Q(x, x4)。如果P的次数小于N,那么P'(y) = Q(special_x, y)的次数将小于N / 4。由于我们不想浪费精力以系数形式来实际计算Q(这需要一个相对难受且繁杂的FFT!),我们改为使用另一种技巧。对于任何给定的x4形式的值,它有4个对应的x值:x,模数 – x以及x乘以-1的两个模平方根。所以我们已经有四个关乎Q(?, x4)的值,我们可以用它来插值多项式R(x) = Q(x, x4),并从据此计算R(special_x) = Q(special_x, x4) = P'(x**4)。x4有N / 4个可能的值,这种方法使得我们可以轻松计算所有这些值。
image这个图表来自本系列第2部分[1]。记住这张图表对于理解本文很有帮助。
我们的证明包含来自x4(使用该列的默克尔根作为种子)形式的值列表的有限次(比如40)随机查询。对于每个查询,我们提供Q(?, x**4)的五个值的默克尔分支:
m2 = merkelize(column)
# 伪随机选择y索引用于采样
# (m2[1]是该列的默克尔根)
ys = get_pseudorandom_indices(m2[1], len(column), 40)
# 为多项式和列中的值计算默克尔分支
branches = []
for y in ys:
branches.append([mk_branch(m2, y)] +
[mk_branch(m, y + (len(xs) // 4) * j) for j in range(4)])
验证者的工作是验证这五个值实际上是否位于小于4的相同次数多项式上。据此,我们递归并在列上执行FRI,验证该列的次数是否小于N / 4。这就是FRI的全部内容。
作为一项思考题练习,你可以尝试创建拥有错误的多项式求值的低次证明,并看看有多少错误可以被忽略并得到验证者的通过(提示,你需要修改prove_low_degree函数。在默认证明设置中,即使一个错误也会爆炸并导致验证失败)。
1
STARK
提醒:现在可能是审阅和重读本系列第1部分[3]的好时机。
现在,我们得到将所有这些部分组合在一起的实质成果: def mk_mimc_proof(inp, steps, round_constants)(代码见此[4]),它生成运行MIMC函数的执行结果的证明,其中给定的输入为步骤数。首先,是一些assert函数:
assert steps <= 2**32 // 扩展因子
assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants))
assert len(round_constants) < steps
扩展因子是我们将“拉伸”计算轨迹(执行MIMC函数的“中间值”的集合)的程度。我们需要步数乘以扩展因子最多为2^32,因为当k > 32时,我们没有2^k次的单位根。
我们的第一个计算是生成计算轨迹,即计算的所有中间值,从输入一直到输出。
#生成计算轨迹
computational_trace = [inp]
for i in range(steps-1):
computational_trace.append((computational_trace[-1]**3 + round_constants[i % len(round_constants)]) % modulus)
output = computational_trace[-1]
然后,我们将计算轨迹转换为多项式,在单位根g(其中,g^steps = 1)的连续幂的轨迹上“放下”连续值,然后我们对更大的集合——即单位根g2的连续幂,其中 g^2steps * 8 = 1(注意g^256 = g)——的多项式求值。
computational_trace_polynomial = inv_fft(computational_trace, modulus, subroot)
p_evaluations = fft(computational_trace_polynomial, modulus, root_of_unity)
image
黑色:‘g1的幂。紫色:‘g2
的幂。橙色:1。你可以将连续的单位根看作一个按这种方式排列的圆圈。我们沿着‘g1的幂“放置”计算轨迹,然后扩展它来计算在中间值处(即
g2`的幂)的相同多项式的值。
我们可以将MIMC的循环常量转换为多项式。因为这些循环常量循环的周期非常短(在我们的测试中,大约为64步),结果证明它们形成了一个64次多项式,我们可以相当容易地计算它的表达式及其扩展:
skips2 = steps // len(round_constants)
constants_mini_polynomial = fft(round_constants, modulus, f.exp(subroot, skips2), inv=True)
constants_polynomial = [0 if i % skips2 else constants_mini_polynomial[i//skips2] for i in range(steps)]
constants_mini_extension = fft(constants_mini_polynomial, modulus, f.exp(root_of_unity, skips2))
假设有8192个执行步骤和64个循环常量。以下是我们正在做的事情:我们正在进行FFT将循环常量作为g1128的函数来计算。然后我们在常量之间添加零使其成为g1本身的函数。因为g1128每64步循环一次,我们也知道g1的函数。我们只需计算512个扩展步骤,因为我们知道扩展也是每512步重复。
我们现在——正如在本系列第1部分的斐波那契例子中那样——计算C(P(x)),但这一次是C(P(x), P(g1*x), K(x)):
#创建组合多项式使得
# C(P(x), P(g1*x), K(x)) = P(g1*x) – P(x)**3 – K(x)
c_of_p_evaluations = [(p_evaluations[(i+extension_factor)%precision] –
f.exp(p_evaluations[i], 3) –
constants_mini_extension[i % len(constants_mini_extension)])
% modulus for i in range(precision)]
print(‘Computed C(P, K) polynomial’)
请注意,这里我们不再使用系数形式的多项式,我们根据高次单位根的连续幂来对多项式进行求值。
c_of_p要满足Q(x) = C(P(x), P(g1x), K(x)) = P(g1x) – P(x)3 – K(x)。我们希望,对于我们正在放置计算轨迹的每个x(除了最后一步,因为在最后一步“之后”没有步骤),轨迹中的下一个值等于轨迹中的前一个值的立方,再加上循环常量。与第1部分中的斐波那契示例不同,在该例子中,如果一个计算步骤在坐标k处,则下一步是在坐标k + 1处。而在这里,我们沿着低次单位根(g1)的连续幂放下计算轨迹。因此,如果一个计算步骤位于x = g1i,则“下一步”位于g1i+1 = g1^i * g1 = x * g1。因此,对于低阶单位根(g1)的每一个幂(除了最后一个),我们都希望它满足P(xg1) = P(x)3 + K(x), 或者 P(xg1) – P(x)**3 – K(x) = Q(x) = 0。因此, Q(x)将在低次单位根g的所有(除了最后一个)连续幂上等于零。
有一个代数定理证明:如果 Q(x)在所有这些x坐标处都等于零,那么它是在所有这些x坐标上等于零的最小多项式的倍数:Z(x) = (x – x_1) * (x – x_2) * … * (x – x_n)。由于证明Q(x)在我们想要检查的每个坐标上都等于零十分困难(因为验证这样的证明比运行原始计算需要耗费更长的时间!),因此,我们使用间接方法来(概率地)证明 Q(x)是Z(x)的倍数。我们该怎么做?当然是通过提供商 D(x) = Q(x) / Z(x)并使用FRI来证明它是一个实际的多项式而不是一个分数。
我们选择低次单位根和高次单位根的特定排列(而不是沿着高次单位根的前几个幂放置计算轨迹),因为事实证明,计算 Z(x)(在除了最后一个点之外的计算轨迹上的所有点处值为零的多项式)。并且除以 Z(x)十分简单:Z的表达式是两项的一部分。
# 计算D(x) = Q(x) / Z(x)
# Z(x) = (x^steps – 1) / (x – x_atlast_step)
z_num_evaluations = [xs[(i * steps) % precision] – 1 for i in range(precision)]
z_num_inv = f.multi_inv(z_num_evaluations)
z_den_evaluations = [xs[i] – last_step_position for i in range(precision)]
d_evaluations = [cp * zd * zni % modulus for cp, zd, zni in zip(c_of_p_evaluations, z_den_evaluations, z_num_inv)]
print(‘Computed D polynomial’)
请注意,我们直接以“求值形式”计算Z的分子和分母,然后用批量模逆的方法将除以Z转换为乘法 (* zd * zni),随后通过Z(X)的逆来逐点乘以Q(x)的值。请注意,对于低次单位根的幂,除了最后一个(即沿着作为原始计算轨迹的一部分的低次扩展部分),有Z(x) = 0。所以这个包含它的逆的计算会中断。虽然我们能通过简单地修改随机检查和FRI算法使其不在那些点上采样的方式来堵塞这些漏洞,但这仍然是一件十分不幸的事情。因此,我们计算错误的事实永远不重要。
因为Z(x)可以如此简洁地表达,我们得到另一个好处:验证者可以非常快速地计算任何特定x的Z(x),而无需任何预计算。我们可以接受证明者必须处理大小等于步数的多项式,但我们不想让验证者做同样的事情,因为我们希望验证过程足够简洁(即超快速,同时证明尽可能小)。
在几个随机选择的点上概率地检查D(x) * Z(x) = Q(x)允许我们验证转换约束——即每个计算步骤是前一步的有效结果。但我们也想验证边界约束——即计算的输入和输出与证明者所说的相同。只要求证明者提供P(1),D(1), P(last_step)和D(last_step)(其中,last_step(或gsteps-1)是对应于计算中最后一步的坐标)的值是很脆弱的,因为没有证明表明这些值与其余数据处在同一多项式上。所以我们使用类似的多项式除法技巧:
#计算 ((1, input), (x_atlast_step, output))的插值
interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output])
i_evaluations = [f.eval_poly_at(interpolant, x) for x in xs]
zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1])
inv_z2_evaluations = f.multi_inv([f.eval_poly_at(quotient, x) for x in xs])
# B = (P – I) / Z2
b_evaluations = [((p – i) * invq) % modulus for p, i, invq in zip(p_evaluations, i_evaluations, inv_z2_evaluations)]
print(‘Computed B polynomial’)
论证如下。证明者想要证明P(1) == 输入以及P(last_step) ==输出。如果我们将I(x) 作为插值——I(x)是穿过点(1, input)和(last_step, output)的线,则P(x) – I(x)在这两点处将等于零。因此,这足以证明 P(x) – I(x)是(x – 1) * (x – last_step)的倍数,我们通过……提供商来实现这一点!
image紫色:计算轨迹多项式(P)。绿色:插值(I)(注意插值是如何构4造的,其在x = 1处等于输入(应该是计算轨迹的第一步),在x=g^steps-1处等于输出(应该是计算轨迹的最后一步)。红色:P-I。黄色:在x = 1和x=g^steps-1(即Z2)处等于0的最小多项式。粉红色 (P – I) / Z2。
思考题:
假设你还想要证明在第703步之后计算轨迹中的值等于8018284612598740,你该如何修改上述算法来执行此操作?
答案是:
将I(x) 设置为(1, input),(g ** 703, 8018284612598740),(last_step, output)的插值,并通过提供商B(x) = (P(x) – I(x)) / ((x – 1) * (x – g ** 703) * (x – last_step)) 来创建证明。
现在,我们将P,D和B的默克尔根组合在一起。
#计算它们的默克尔根
mtree = merkelize([pval.to_bytes(32, ‘big’) +
dval.to_bytes(32, ‘big’) +
bval.to_bytes(32, ‘big’) for
pval, dval, bval in zip(p_evaluations, d_evaluations, b_evaluations)])
print(‘Computed hash root’)
现在,我们需要证明P,D和B实际上都是多项式,并且多项式的次数都是正确的最大次数。但是FRI证明很大且成本高昂,我们不希望有三个FRI证明。因此,我们计算P,D和B的伪随机线性组合(使用P,D和B的默克尔根作为种子),并对此进行FRI证明:
k1 = int.from_bytes(blake(mtree[1] + b’\x01′), ‘big’)
k2 = int.from_bytes(blake(mtree[1] + b’\x02′), ‘big’)
k3 = int.from_bytes(blake(mtree[1] + b’\x03′), ‘big’)
k4 = int.from_bytes(blake(mtree[1] + b’\x04′), ‘big’)
#计算线性组合。我们甚至不打算对它进行计算。
#以系数形式,我们只是计算估值。
root_of_unity_to_the_steps = f.exp(root_of_unity, steps)
powers = [1]
for i in range(1, precision):
powers.append(powers[-1] * root_of_unity_to_the_steps % modulus)
l_evaluations = [(d_evaluations[i] +
p_evaluations[i] * k1 + p_evaluations[i] * k2 * powers[i] +
b_evaluations[i] * k3 + b_evaluations[i] * powers[i] * k4) % modulus
for i in range(precision)]
除非三个多项式都具有正确的低次数,否则它们的随机选择线性组合几乎不可能具有正确的低次(你必须非常幸运地消去这些项),所以这是充分的。
我们想证明D的次数小于2步,而P和B的次数小于步数,所以我们实际上构建了P,P * xsteps,B,Bsteps和D的随机线性组合,并检查该组合的次数小于2步。
现在,我们对所有多项式进行抽查。我们生成一些随机索引,并提供在这些索引处求值的多项式的默克尔分支:
#在伪随机坐标处对默克尔树进行抽查
excluding
# `扩展因子`的倍数
branches = []
samples = spot_check_security_factor
positions = get_pseudorandom_indices(l_mtree[1], precision, samples,
exclude_multiples_of=extension_factor)
for pos in positions:
branches.append(mk_branch(mtree, pos))
branches.append(mk_branch(mtree, (pos + skips) % precision))
branches.append(mk_branch(l_mtree, pos))
print(‘Computed %d spot checks’ % samples)
get_pseudorandom_indices函数返回[0…precision-1]范围内的一些随机索引,exclude_multiples_of参数告诉它不要给出特定参数(此处为扩展因子)的倍数的值。这可以确保我们不会沿着原始计算轨迹进行采样,否则的话,我们可能会得到错误的答案。
证明(约25万到50万字节)由一组默克尔根、经过抽查的分支以及随机线性组合的低次证明组成:
o = [mtree[1],
l_mtree[1],
branches,
prove_low_degree(l_evaluations, root_of_unity, steps * 2, modulus, exclude_multiples_of=extension_factor)]
在实践中,证明的最大部分是默克尔分支和FRI证明(它可能包含更多分支)组成。这是验证者的实质成果:
for i, pos in enumerate(positions):
x = f.exp(G2, pos)
x_to_the_steps = f.exp(x, steps)
mbranch1 = verify_branch(m_root, pos, branches[i*3])
mbranch2 = verify_branch(m_root, (pos+skips)%precision, branches[i*3+1])
l_of_x = verify_branch(l_root, pos, branches[i*3 + 2], output_as_int=True)
p_of_x = int.from_bytes(mbranch1[:32], ‘big’)
p_of_g1x = int.from_bytes(mbranch2[:32], ‘big’)
d_of_x = int.from_bytes(mbranch1[32:64], ‘big’)
b_of_x = int.from_bytes(mbranch1[64:], ‘big’)
zvalue = f.div(f.exp(x, steps) – 1,
x – last_step_position)
k_of_x = f.eval_poly_at(constants_mini_polynomial, f.exp(x, skips2))
#检查转换约束Q(x) = Z(x) * D(x)
assert (p_of_g1x – p_of_x ** 3 – k_of_x – zvalue * d_of_x) % modulus == 0
# Check boundary constraints B(x) * Z2(x) + I(x) = P(x)
interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output])
zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1])
assert (p_of_x – b_of_x * f.eval_poly_at(zeropoly2, x) –
f.eval_poly_at(interpolant, x)) % modulus == 0
#检查线性组合的正确性
assert (l_of_x – d_of_x –
k1 * p_of_x – k2 * p_of_x * x_to_the_steps –
k3 * b_of_x – k4 * b_of_x * x_to_the_steps) % modulus == 0
在证明者提供默克尔证明的每个位置,验证者检查默克尔证明,并检查C(P(x), P(g1x), K(x)) = Z(x) * D(x)和B(x) * Z2(x) + I(x) = P(x)(提醒:对于不在原始计算轨迹上的x, Z(x)不会为零,因此C(P(x),P(g1x), K(x))可能不会为零)。验证者还检查线性组合是否正确,并调用
verify_low_degree_proof(l_root, root_of_unity, fri_proof, steps * 2, modulus, exclude_multiples_of=extension_factor)来验证FRI证明。我们完成了!
好吧,我们没有全部完成。证明对跨多项式检查和FRI所需的抽查次数的可靠性分析是非常棘手的。但这就是代码的全部内容,至少如果你不打算进行更疯狂的优化的话。当我运行上述代码时,我们得到一个大约300到400倍的STARK证明“开销”(例如,一个需要0.2秒的MIMC计算需要60秒来证明)。这表明使用一台4核机器计算前向MIMC计算上的STARK实际上可以比后向计算MIMC更快。也就是说,这些都是在python中相对低效的实现,并且在适当优化的实现中,证明与运行时间比可能是不同的。此外,值得指出的是,MIMC的STARK证明开销非常低,因为MIMC几乎完全是“可算术化的” ——它的数学形式非常简单。对于包含较少算术明晰运算(例如,检查数字是否大于或小于另一个数字)的“平均”计算而言,其开销可能会更高,大约为10000到50000倍。
2
补充资料
文中提及的标注原文链接如下:
[1] https://mp.weixin.qq.com/s/KPjpaOJahIm9fH_Q3UhunQ
[2] https://github.com/ethereum/research/blob/master/mimc_stark/fri.py
[3]https://mp.weixin.qq.com/s/O-qGXp2Dlh1SHzx2dWUEIA
[4] https://github.com/ethereum/research/blob/master/mimc_stark/mimc_stark.py
内容来源: Unitimes
原文作者:Vitalik Buterin
翻译:喏贝尔
原文链接:
https://vitalik.ca/general/2018/07/21/starks_part_3.html
原文篇幅较长,分为上下两部分发布
线上课程推荐
线上课程:《8小时区块链智能合约开发实践》
培训讲师:《白话区块链》作者 蒋勇
课程原价:999元,现价 399元
更多福利:
-
@所有人,识别下图二维码转发课程邀请好友报名,即可获得报名费50%返利
-
@学员,报名学习课程并在规定时间内完成考试即可瓜分10000元奖金
网友评论