美文网首页
人脸检测-SSH 读后感

人脸检测-SSH 读后感

作者: 教训小磊 | 来源:发表于2019-08-24 15:32 被阅读0次

这篇文章是用one-stage的方法实现快、准、轻的人脸检测,骨干网络用的是VGG-16,去除了所谓的head,即最后的3个全连接层。最后的分类和bbox回归用RPN的anchor实现,相比faster-rcnn中的anchor,本文作者只是用1:1的宽高比,作者在实验中发现不同的宽高比对实验精度的提高没有太大帮助。

本文在VGG之上构建了三个并行网络,M1,M2,M3分别用来检测小、中、大人脸。如下图一:

图一   SHH网络构架

我这里从中间的M2说起,在VGG-16的最后一个卷积层conv5输出之后分成两路,上面一路用于检测中型人脸,下面一路用于跟M1进行特征融合,先通过1x1卷积降维(128),然后通过双线性插值上采样。M2的这一步是参考FPN(特征金字塔)的将高维特征和低维特征融合来获得更多文本语义信息,这样有助于检测小物体,比如小人脸。M1,M3这块的大体检测没啥好讲的,图一表述的很清楚了。

接下去来讲讲这里面的Detection Module部分,如图二:

图二  Detection Module 构架

Detection Module 采用并行连接,3x3卷积+上下文检测模块,然后concat连接,最后通过1x1卷积分类和bbox回归,这样的方法还是挺新颖的,用1x1卷积干这种事,之前用于代替全连接层干这些活的就只有是全局平局池化。这里面的S是步长的意思,本文作者的设定分别是8,16,32。

然后就是Context module 模块,如下图三:

图三  Context module构架

顾名思义这个模块主要用来增强上下文语义信息,它的思想来自Google出的Inceotion系列,增加宽度。用卷积核为5x5,7x7来进行操作,但是为了减小计算量用2个3x3和3个3x3代替上面两者,因为5x5,7x7的感受野跟2个3x3和3个3x3一样,但计算量明显小很多,5x5→2x3x3,7x7→3x3x3。

最后作者还强调因为把VGG-16的head 去掉了,所以用Online hard negative and positive mining方法训练变得很重要,这个方法是2016提出的,具体怎么样的我也还不清楚,接下去要去看一下这篇文章。

相关文章

  • 人脸检测-SSH 读后感

    这篇文章是用one-stage的方法实现快、准、轻的人脸检测,骨干网络用的是VGG-16,去除了所谓的head,即...

  • MTCNN

      人脸任务总体上分为:人脸检测、人脸关键点检测、人脸判别、人脸识别、人脸聚类等。  作者认为人脸检测和人脸关键点...

  • opencv之人脸检测项目实战(二)

    自我介绍 目录 一、人脸检测整体架构1.1 什么是人脸检测?1.2 人脸检测的应用场景1.3 人脸检测核心架构二、...

  • 安卓OpenCV开发(二)人脸检测

    重点是人脸检测,检测,检测。 就是把人脸检测出来,不是识别,不是识别,不是识别。识别的意思,就是检测到人脸,并且通...

  • 人脸活体检测

    人脸检测 关键点检测 人脸对齐(仿射变换) 活体检测/身份识别

  • 人脸识别

    图片人脸检测——OpenCV版(二) 图片人脸检测——Dlib版(四) 人脸识别之人脸对齐(一)--定义及作用

  • iOS ---人脸检测

    检测图像中的人脸 Core Image可以分析并找到图像中的人脸。它执行的是人脸检测,而不是识别。人脸检测是识别包...

  • Android之基于Facenet模型比对视频中的人脸

    前言 继续前面 MTCNN移植安卓并检测视频中人脸 ,已经检测到人脸,那么需要对所检测的人脸和本地的人脸数据做比对...

  • 较为成熟的安卓项目--人面识别,手势识别向

    一、 人脸识别 1. 目标检测&目标追踪&人脸检测&人脸识别 GitHub:https://github.com/...

  • AVFoundation开发秘籍笔记-07高级捕捉功能之人脸识别

    一、概述 这里的人脸检测是通过AVFoundation实现的实时人脸检测功能,会在检测到人脸自动建立相应的焦点。 ...

网友评论

      本文标题:人脸检测-SSH 读后感

      本文链接:https://www.haomeiwen.com/subject/bgbfectx.html