图的环检测

作者: null12 | 来源:发表于2018-03-23 10:58 被阅读0次

    一、无向图的环判断

    1.1 环的定义

    此处的环不包含自环平行边

    1-1-1 自环和平行边

    无向图中环的示意图如下所示:

    1-1-2 无向图中环的示意图

    上图中,0-6-4-5构成了环

    1.2 环的判断

    基本思想:
    采用深度优先遍历(DFS)无向图。
    如果在遍历的过程中,发现某个顶点有一条边指向已经访问过的顶点,且这个已访问过的顶点不是当前顶点的父节点(这里的父节点表示DFS遍历顺序中的父节点),则说明图包含环。

    如图1-1-2中:从0开始DFS,0->6->4->5,此时顶点5的一条边指向顶点0,顶点0已经访问过,但却不是顶点5的父节点(顶点4),说明出现了环。

    源码实现:

    public class Cycle {
        private boolean[] marked;
        private boolean hasCycle;
    
        public Cycle(Graph G) {
            marked = new boolean[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v])
                    dfs(G, -1, v);
        }
    
        /**
         * 从顶点v开始进行深度优先搜索,u表示v的前驱顶点:u->v
         */
        private void dfs(Graph G, int u, int v) {
            marked[v] = true;
            for (int w : G.adj(v)) { // w为v的后继顶点:v->w
                if (!marked[w]) { // 如果w未访问过
                    dfs(G, v, w);
                } else {
                    // 如果w已经访问过,但w不是当前v的前驱顶点u
                    // 此时说明w有两个前驱结点
                    if (w != u) {
                        hasCycle = true;
                        break;
                    }
                }
            }
        }
        public boolean hasCycle() {
            return hasCycle;
        }
    }
    

    二、有向图的环路判断

    2.1 环的定义

    有向图中环的示意图如下所示:

    2-1-1 有向图中环的示意图

    1.2 环的判断

    基本思想:
    采用深度优先遍历(DFS)有向图。
    用一个boolean数组表示顶点是否在调用栈上。如果发现某个顶点v有一条边指向已经访问过的顶点w,而w已经在深度优先调用栈上,则说明存在环。

    1-2-1 有向图中环的查找

    源码实现:

    public class EdgeWeightedDirectedCycle {
        private boolean[] marked;             // marked[v] = has vertex v been marked?
        private DirectedEdge[] edgeTo;        // edgeTo[v] = previous edge on path to v
        private boolean[] onStack;            // onStack[v] = is vertex on the stack?
        private Stack<DirectedEdge> cycle;    // directed cycle (or null if no such cycle)
    
        /**
         * Determines whether the edge-weighted digraph {@code G} has a directed cycle and,
         * if so, finds such a cycle.
         * @param G the edge-weighted digraph
         */
        public EdgeWeightedDirectedCycle(EdgeWeightedDigraph G) {
            marked  = new boolean[G.V()];
            onStack = new boolean[G.V()];
            edgeTo  = new DirectedEdge[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v]) dfs(G, v);
    
            // check that digraph has a cycle
            assert check();
        }
    
        // check that algorithm computes either the topological order or finds a directed cycle
        private void dfs(EdgeWeightedDigraph G, int v) {
            onStack[v] = true;
            marked[v] = true;
            for (DirectedEdge e : G.adj(v)) {
                int w = e.to();
    
                // short circuit if directed cycle found
                if (cycle != null) return;
    
                // found new vertex, so recur
                else if (!marked[w]) {
                    edgeTo[w] = e;
                    dfs(G, w);
                }
    
                // trace back directed cycle
                else if (onStack[w]) {
                    cycle = new Stack<DirectedEdge>();
    
                    DirectedEdge f = e;
                    while (f.from() != w) {
                        cycle.push(f);
                        f = edgeTo[f.from()];
                    }
                    cycle.push(f);
    
                    return;
                }
            }
    
            onStack[v] = false;
        }
    
        /**
         * Does the edge-weighted digraph have a directed cycle?
         * @return {@code true} if the edge-weighted digraph has a directed cycle,
         * {@code false} otherwise
         */
        public boolean hasCycle() {
            return cycle != null;
        }
    
        /**
         * Returns a directed cycle if the edge-weighted digraph has a directed cycle,
         * and {@code null} otherwise.
         * @return a directed cycle (as an iterable) if the edge-weighted digraph
         *    has a directed cycle, and {@code null} otherwise
         */
        public Iterable<DirectedEdge> cycle() {
            return cycle;
        }
    
        // certify that digraph is either acyclic or has a directed cycle
        private boolean check() {
            // edge-weighted digraph is cyclic
            if (hasCycle()) {
                // verify cycle
                DirectedEdge first = null, last = null;
                for (DirectedEdge e : cycle()) {
                    if (first == null) first = e;
                    if (last != null) {
                        if (last.to() != e.from()) {
                            System.err.printf("cycle edges %s and %s not incident\n", last, e);
                            return false;
                        }
                    }
                    last = e;
                }
                if (last.to() != first.from()) {
                    System.err.printf("cycle edges %s and %s not incident\n", last, first);
                    return false;
                }
            }
            return true;
        }
    
        /**
         * Unit tests the {@code EdgeWeightedDirectedCycle} data type.
         *
         * @param args the command-line arguments
         */
        public static void main(String[] args) {
            // create random DAG with V vertices and E edges; then add F random edges
            int V = Integer.parseInt(args[0]);
            int E = Integer.parseInt(args[1]);
            int F = Integer.parseInt(args[2]);
            EdgeWeightedDigraph G = new EdgeWeightedDigraph(V);
            int[] vertices = new int[V];
            for (int i = 0; i < V; i++)
                vertices[i] = i;
            StdRandom.shuffle(vertices);
            for (int i = 0; i < E; i++) {
                int v, w;
                do {
                    v = StdRandom.uniform(V);
                    w = StdRandom.uniform(V);
                } while (v >= w);
                double weight = StdRandom.uniform();
                G.addEdge(new DirectedEdge(v, w, weight));
            }
            // add F extra edges
            for (int i = 0; i < F; i++) {
                int v = StdRandom.uniform(V);
                int w = StdRandom.uniform(V);
                double weight = StdRandom.uniform(0.0, 1.0);
                G.addEdge(new DirectedEdge(v, w, weight));
            }
            StdOut.println(G);
            // find a directed cycle
            EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
            if (finder.hasCycle()) {
                StdOut.print("Cycle: ");
                for (DirectedEdge e : finder.cycle()) {
                    StdOut.print(e + " ");
                }
                StdOut.println();
            }
            // or give topologial sort
            else {
                StdOut.println("No directed cycle");
            }
        }
    }
    

    相关文章

      网友评论

        本文标题:图的环检测

        本文链接:https://www.haomeiwen.com/subject/bgvtcftx.html