优先级队列

作者: null12 | 来源:发表于2018-03-21 11:29 被阅读0次

    一、定义

    优先级队列有很多种实现方式。其中使用“堆”来实现“优先队列”是最常见的,堆的底层是完全二叉树的形式。

    1-0 堆的示意图

    上述是一个小顶堆(最小堆)的示意图

    最小堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于其左子节点和右子节点的值。

    二、API

    2-0 大顶堆的API定义

    2.1 上浮和下沉

    堆的操作中,最重要的就是堆元素的上浮和下沉操作:

    • 上浮(siftup)
      在堆中插入元素后(完全二叉树的最右下方插入),需要进行上浮操作,重新使得堆有序。


      2-1-1 大顶堆上浮元素
    private void swim(int k) {
        while (k > 1 && (a[k]>a[k/2])) {
            exch(k, k/2);  //交换元素
            k = k/2;
        }
    }
    
    • 下沉(siftdown)
      当删除一个堆元素(堆顶)时,首先将堆顶元素与最右下方元素交换,然后删除。此时堆顶元素需要进行下沉操作,重新使得堆有序。


      2-1-2 大顶堆下沉元素
    private void sink(int k) {
        while (2*k <= n) {
            //j指向k的较小的子结点
            int j = 2*k;
            if (j < n && less(j, j+1)) j++;
            if (!less(k, j)) break;
            swap(k, j);
            k = j;
        }
    }
    

    2.2 插入元素

    新增元素添加到树的底层最右侧,然后上浮。


    2-2-1 大顶堆的插入

    2.3 删除最大元素

    将树的最后一个元素与第一个元素交换,删除最后一个元素,然后从堆顶开始下沉。


    2-3-1 大顶堆删除最大元素

    三、完整实现

    3.1 大顶堆

    3-1-1 大顶堆的操作用例
    public class MaxPQ<Key> implements Iterable<Key> {
        private Key[] pq;                    // store items at indices 1 to n
        private int n;                       // number of items on priority queue
        private Comparator<Key> comparator;  // optional comparator
    
        /**
         * Initializes an empty priority queue with the given initial capacity.
         *
         * @param  initCapacity the initial capacity of this priority queue
         */
        public MaxPQ(int initCapacity) {
            pq = (Key[]) new Object[initCapacity + 1];
            n = 0;
        }
    
        /**
         * Initializes an empty priority queue.
         */
        public MaxPQ() {
            this(1);
        }
    
        /**
         * Initializes an empty priority queue with the given initial capacity,
         * using the given comparator.
         *
         * @param  initCapacity the initial capacity of this priority queue
         * @param  comparator the order in which to compare the keys
         */
        public MaxPQ(int initCapacity, Comparator<Key> comparator) {
            this.comparator = comparator;
            pq = (Key[]) new Object[initCapacity + 1];
            n = 0;
        }
    
        /**
         * Initializes an empty priority queue using the given comparator.
         *
         * @param  comparator the order in which to compare the keys
         */
        public MaxPQ(Comparator<Key> comparator) {
            this(1, comparator);
        }
    
        /**
         * Initializes a priority queue from the array of keys.
         * Takes time proportional to the number of keys, using sink-based heap construction.
         *
         * @param  keys the array of keys
         */
        public MaxPQ(Key[] keys) {
            n = keys.length;
            pq = (Key[]) new Object[keys.length + 1];
            for (int i = 0; i < n; i++)
                pq[i+1] = keys[i];
            for (int k = n/2; k >= 1; k--)
                sink(k);
            assert isMaxHeap();
        }
          
        /**
         * Returns true if this priority queue is empty.
         *
         * @return {@code true} if this priority queue is empty;
         *         {@code false} otherwise
         */
        public boolean isEmpty() {
            return n == 0;
        }
    
        /**
         * Returns the number of keys on this priority queue.
         *
         * @return the number of keys on this priority queue
         */
        public int size() {
            return n;
        }
    
        /**
         * Returns a largest key on this priority queue.
         *
         * @return a largest key on this priority queue
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key max() {
            if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
            return pq[1];
        }
    
        // helper function to double the size of the heap array
        private void resize(int capacity) {
            assert capacity > n;
            Key[] temp = (Key[]) new Object[capacity];
            for (int i = 1; i <= n; i++) {
                temp[i] = pq[i];
            }
            pq = temp;
        }
    
        /**
         * Adds a new key to this priority queue.
         *
         * @param  x the new key to add to this priority queue
         */
        public void insert(Key x) {
    
            // double size of array if necessary
            if (n == pq.length - 1) resize(2 * pq.length);
    
            // add x, and percolate it up to maintain heap invariant
            pq[++n] = x;
            swim(n);
            assert isMaxHeap();
        }
    
        /**
         * Removes and returns a largest key on this priority queue.
         *
         * @return a largest key on this priority queue
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key delMax() {
            if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
            Key max = pq[1];
            exch(1, n--);
            sink(1);
            pq[n+1] = null;     // to avoid loiterig and help with garbage collection
            if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
            assert isMaxHeap();
            return max;
        }
    
       /***************************************************************************
        * Helper functions to restore the heap invariant.
        ***************************************************************************/
        private void swim(int k) {
            while (k > 1 && less(k/2, k)) {
                exch(k, k/2);
                k = k/2;
            }
        }
    
        private void sink(int k) {
            while (2*k <= n) {
                int j = 2*k;
                if (j < n && less(j, j+1)) j++;
                if (!less(k, j)) break;
                exch(k, j);
                k = j;
            }
        }
    
       /***************************************************************************
        * Helper functions for compares and swaps.
        ***************************************************************************/
        private boolean less(int i, int j) {
            if (comparator == null) {
                return ((Comparable<Key>) pq[i]).compareTo(pq[j]) < 0;
            }
            else {
                return comparator.compare(pq[i], pq[j]) < 0;
            }
        }
    
        private void exch(int i, int j) {
            Key swap = pq[i];
            pq[i] = pq[j];
            pq[j] = swap;
        }
    
        // is pq[1..N] a max heap?
        private boolean isMaxHeap() {
            return isMaxHeap(1);
        }
    
        // is subtree of pq[1..n] rooted at k a max heap?
        private boolean isMaxHeap(int k) {
            if (k > n) return true;
            int left = 2*k;
            int right = 2*k + 1;
            if (left  <= n && less(k, left))  return false;
            if (right <= n && less(k, right)) return false;
            return isMaxHeap(left) && isMaxHeap(right);
        }
    
        /**
         * Returns an iterator that iterates over the keys on this priority queue
         * in descending order.
         * The iterator doesn't implement {@code remove()} since it's optional.
         *
         * @return an iterator that iterates over the keys in descending order
         */
        public Iterator<Key> iterator() {
            return new HeapIterator();
        }
    
        private class HeapIterator implements Iterator<Key> {
            // create a new pq
            private MaxPQ<Key> copy;
    
            // add all items to copy of heap
            // takes linear time since already in heap order so no keys move
            public HeapIterator() {
                if (comparator == null) copy = new MaxPQ<Key>(size());
                else                    copy = new MaxPQ<Key>(size(), comparator);
                for (int i = 1; i <= n; i++)
                    copy.insert(pq[i]);
            }
            public boolean hasNext()  { return !copy.isEmpty();                     }
            public void remove()      { throw new UnsupportedOperationException();  }
            public Key next() {
                if (!hasNext()) throw new NoSuchElementException();
                return copy.delMax();
            }
        }
    }
    

    3.2 小顶堆

    public class MinPQ<Key> implements Iterable<Key> {
        private Key[] pq;                    // store items at indices 1 to n
        private int n;                       // number of items on priority queue
        private Comparator<Key> comparator;  // optional comparator
    
        /**
         * Initializes an empty priority queue with the given initial capacity.
         *
         * @param  initCapacity the initial capacity of this priority queue
         */
        public MinPQ(int initCapacity) {
            pq = (Key[]) new Object[initCapacity + 1];
            n = 0;
        }
    
        /**
         * Initializes an empty priority queue.
         */
        public MinPQ() {
            this(1);
        }
    
        /**
         * Initializes an empty priority queue with the given initial capacity,
         * using the given comparator.
         *
         * @param  initCapacity the initial capacity of this priority queue
         * @param  comparator the order in which to compare the keys
         */
        public MinPQ(int initCapacity, Comparator<Key> comparator) {
            this.comparator = comparator;
            pq = (Key[]) new Object[initCapacity + 1];
            n = 0;
        }
    
        /**
         * Initializes an empty priority queue using the given comparator.
         *
         * @param  comparator the order in which to compare the keys
         */
        public MinPQ(Comparator<Key> comparator) {
            this(1, comparator);
        }
    
        /**
         * Initializes a priority queue from the array of keys.
         * <p>
         * Takes time proportional to the number of keys, using sink-based heap construction.
         *
         * @param  keys the array of keys
         */
        public MinPQ(Key[] keys) {
            n = keys.length;
            pq = (Key[]) new Object[keys.length + 1];
            for (int i = 0; i < n; i++)
                pq[i+1] = keys[i];
            for (int k = n/2; k >= 1; k--)
                sink(k);
            assert isMinHeap();
        }
    
        /**
         * Returns true if this priority queue is empty.
         *
         * @return {@code true} if this priority queue is empty;
         *         {@code false} otherwise
         */
        public boolean isEmpty() {
            return n == 0;
        }
    
        /**
         * Returns the number of keys on this priority queue.
         *
         * @return the number of keys on this priority queue
         */
        public int size() {
            return n;
        }
    
        /**
         * Returns a smallest key on this priority queue.
         *
         * @return a smallest key on this priority queue
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key min() {
            if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
            return pq[1];
        }
    
        // helper function to double the size of the heap array
        private void resize(int capacity) {
            assert capacity > n;
            Key[] temp = (Key[]) new Object[capacity];
            for (int i = 1; i <= n; i++) {
                temp[i] = pq[i];
            }
            pq = temp;
        }
    
        /**
         * Adds a new key to this priority queue.
         *
         * @param  x the key to add to this priority queue
         */
        public void insert(Key x) {
            // double size of array if necessary
            if (n == pq.length - 1) resize(2 * pq.length);
    
            // add x, and percolate it up to maintain heap invariant
            pq[++n] = x;
            swim(n);
            assert isMinHeap();
        }
    
        /**
         * Removes and returns a smallest key on this priority queue.
         *
         * @return a smallest key on this priority queue
         * @throws NoSuchElementException if this priority queue is empty
         */
        public Key delMin() {
            if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
            Key min = pq[1];
            exch(1, n--);
            sink(1);
            pq[n+1] = null;     // to avoid loiterig and help with garbage collection
            if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
            assert isMinHeap();
            return min;
        }
    
       /***************************************************************************
        * Helper functions to restore the heap invariant.
        ***************************************************************************/
        private void swim(int k) {
            while (k > 1 && greater(k/2, k)) {
                exch(k, k/2);
                k = k/2;
            }
        }
    
        private void sink(int k) {
            while (2*k <= n) {
                int j = 2*k;
                if (j < n && greater(j, j+1)) j++;
                if (!greater(k, j)) break;
                exch(k, j);
                k = j;
            }
        }
    
       /***************************************************************************
        * Helper functions for compares and swaps.
        ***************************************************************************/
        private boolean greater(int i, int j) {
            if (comparator == null) {
                return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
            }
            else {
                return comparator.compare(pq[i], pq[j]) > 0;
            }
        }
    
        private void exch(int i, int j) {
            Key swap = pq[i];
            pq[i] = pq[j];
            pq[j] = swap;
        }
    
        // is pq[1..N] a min heap?
        private boolean isMinHeap() {
            return isMinHeap(1);
        }
    
        // is subtree of pq[1..n] rooted at k a min heap?
        private boolean isMinHeap(int k) {
            if (k > n) return true;
            int left = 2*k;
            int right = 2*k + 1;
            if (left  <= n && greater(k, left))  return false;
            if (right <= n && greater(k, right)) return false;
            return isMinHeap(left) && isMinHeap(right);
        }
    
        /**
         * Returns an iterator that iterates over the keys on this priority queue
         * in ascending order.
         * <p>
         * The iterator doesn't implement {@code remove()} since it's optional.
         *
         * @return an iterator that iterates over the keys in ascending order
         */
        public Iterator<Key> iterator() {
            return new HeapIterator();
        }
    
        private class HeapIterator implements Iterator<Key> {
            // create a new pq
            private MinPQ<Key> copy;
    
            // add all items to copy of heap
            // takes linear time since already in heap order so no keys move
            public HeapIterator() {
                if (comparator == null) copy = new MinPQ<Key>(size());
                else                    copy = new MinPQ<Key>(size(), comparator);
                for (int i = 1; i <= n; i++)
                    copy.insert(pq[i]);
            }
            
            public boolean hasNext()  { return !copy.isEmpty();                     }
            public void remove()      { throw new UnsupportedOperationException();  }
            public Key next() {
                if (!hasNext()) throw new NoSuchElementException();
                return copy.delMin();
            }
        }
    }
    

    四、性能分析

    • 时间复杂度
      插入操作:O(lgN)
      删除操作:O(lgN)
      建堆:O(NlgN)
    • 空间复杂度
      O(N)

    相关文章

      网友评论

        本文标题:优先级队列

        本文链接:https://www.haomeiwen.com/subject/wwuwqftx.html