批量KEGG、GO注释

作者: 麒麟991 | 来源:发表于2019-12-02 09:03 被阅读0次

    单细胞测序数据经Seurat包tsne降维聚类后,得到cluster,如何找出cluster的marker并进行GO、KEGG分析

    需要R包:Seurat、clusterProfiler、ggplot2

    library(Seurat)
    library(dplyr)
    library(clusterProfiler)
    library(ggplot2)
    for( j in 0:12)
    {
    cluster.markers <- FindMarkers(object = RA.integrated, ident.1 =j, logfc.threshold = 0.25, test.use = "bimod", only.pos = TRUE)
    cluster<- row.names.data.frame(cluster.markers)
    cluster=bitr(cluster,fromType = "SYMBOL",toType = c("ENTREZID"),OrgDb = "org.Hs.eg.db")
    cluster.go<-enrichGO(gene=cluster[,"ENTREZID"],keyType = "ENTREZID",OrgDb=org.Hs.eg.db,ont = "ALL",pAdjustMethod = "BH",pvalueCutoff = 0.01,qvalueCutoff = 0.05,readable = TRUE)
    assign(paste0("cluster",j,".go"),cluster.go)
    pdf(file = paste0("cluster",j,"go.pdf"),,width=20,height=10)
    barplot(cluster.go,showCategory=50)
    dev.off()
    
    cluster.kegg<-enrichKEGG(gene = cluster[,"ENTREZID"],organism = 'hsa', pvalueCutoff = 0.05,pAdjustMethod = 'BH', minGSSize = 10,maxGSSize = 500,qvalueCutoff = 0.2,use_internal_data = FALSE)
    assign(paste0("cluster",j,".kegg"),cluster.kegg)
    pdf(file = paste0("cluster",j,"kegg.pdf"),,width=20,height=10)
    dotplot(cluster.kegg,showCategory=50)
    dev.off()
    write.csv(x=cluster.markers,file=paste0("cluster",j,".csv"))
    }
    

    相关文章

      网友评论

        本文标题:批量KEGG、GO注释

        本文链接:https://www.haomeiwen.com/subject/bhlxgctx.html