数据相关性图

作者: 麒麟991 | 来源:发表于2019-11-21 09:44 被阅读0次

一、安装与加载

install.packages("corrplot", lib=<此处可以指定安装路径,在服务器生产环境中特别有用>)
library(corrplot)

二、数据前处理

加载示例数据集

> data(mtcars)
> head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1   1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

计算相关系数

> M <- cor(mtcars)
> head(M, 2)
          mpg       cyl       disp         hp       drat         wt
mpg  1.000000 -0.852162 -0.8475514 -0.7761684  0.6811719 -0.8676594
cyl -0.852162  1.000000  0.9020329  0.8324475 -0.6999381  0.7824958
          qsec         vs         am       gear       carb
mpg  0.4186840  0.6640389  0.5998324  0.4802848 -0.5509251
cyl -0.5912421 -0.8108118 -0.5226070 -0.4926866  0.5269883

二、设置不同系列颜色

col1 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "white",
                           "cyan", "#007FFF", "blue","#00007F"))
col2 <- colorRampPalette(c("#67001F", "#B2182B", "#D6604D", "#F4A582",
                           "#FDDBC7", "#FFFFFF", "#D1E5F0", "#92C5DE",
                           "#4393C3", "#2166AC", "#053061"))
col3 <- colorRampPalette(c("red", "white", "blue"))
col4 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F",
                           "cyan", "#007FFF", "blue", "#00007F"))
wb <- c("white", "black")

当然也可以用其他调色包

三、基本绘图语法

# methold参数设定不同展示方式
corrplot(M) #默认methold="circle"

image

四、样式调整

上三角

# type参数设定展示类型,默认type="full"展示全部
corrplot(M, order='AOE', type = "upper")

image

常用参数:

corr:需要可视化的相关系数矩阵 method:指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形

type:指定展示的方式,可以是完全的、下三角或上三角

col:指定图形展示的颜色,默认以均匀的颜色展示

bg:指定图的背景色 title:为图形添加标题

is.corr:是否为相关系数绘图,默认为TRUE,同样也可以实现非相关系数的可视化,只需使该参数设为FALSE即可

diag:是否展示对角线上的结果,默认为TRUE

outline:是否绘制圆形、方形或椭圆形的轮廓,默认为FALSE

mar:具体设置图形的四边间距

addgrid.col:当选择的方法为颜色或阴影时,默认的网格线颜色为白色,否则为灰色

addCoef.col:为相关系数添加颜色,默认不添加相关系数,只有方法为number时,该参数才起作用

addCoefasPercent:为节省绘图空间,是否将相关系数转换为百分比格式,默认为FALSE

order:指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好

hclust.method:当order为hclust时,该参数可以是层次聚类中ward法、最大距离法等7种之一

addrect:当order为hclust时,可以为添加相关系数图添加矩形框,默认不添加框,如果想添加框时,只需为该参数指定一个整数即可

rect.col:指定矩形框的颜色

rect.lwd:指定矩形框的线宽

tl.pos:指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签

tl.cex:指定文本标签的大小

tl.col:指定文本标签的颜色

cl.pos:图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n

addshade:只有当method=shade时,该参数才有用,参数值可以是negtive/positive和all,分表表示对负相关系数、正相关系数和所有相关系数添加阴影。注意:正相关系数的阴影是45度,负相关系数的阴影是135度

shade.lwd:指定阴影的线宽

shade.col:指定阴影线的颜色

参考阅读:

相关文章

网友评论

    本文标题:数据相关性图

    本文链接:https://www.haomeiwen.com/subject/vuezictx.html