美文网首页
linux内核分析第二周作业

linux内核分析第二周作业

作者: Sawoom | 来源:发表于2016-03-02 21:11 被阅读0次

    实验截图

    实验代码分析

    mypcb.h

    #define MAX_TASK_NUM        4           // 最大进程数
    #define KERNEL_STACK_SIZE   1024*8      //内核堆栈大小
    
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long       ip; //定义eip
        unsigned long       sp; //定义esp
    };
    
    typedef struct PCB{
        int pid;                //定义进程标识符(进程号)  
        volatile long state;      //定义进程状态:-1不运行,0运行,>0停止
        char stack[KERNEL_STACK_SIZE];  //定义内核堆栈
        
        struct Thread thread;   //定义一个Thread(eip,esp)
        unsigned long   task_entry; //定义进程入口
        struct PCB *next;       //定义进程链表指针  
    }tPCB;
    
    void my_schedule(void);   //定义进程调度器
    
    
    

    mymain.c

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];           //声明一个task数组
    tPCB * my_current_task = NULL;     //声明一个进程控制块指针
    volatile int my_need_sched = 0;    //设置调度标识符
    
    void my_process(void);           
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;  
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;     //初始化进程pid为0.
        task[pid].state = 0;     //初始化0号进程状态为运行
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;             //初始化程序入口为,my_process
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; //初始化堆栈栈顶,esp指向栈顶。
        task[pid].next = &task[pid];  //初始时系统只有一个进程,所以自己指向自己。
        /*创建更多的进程*/
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB)); //将0号进程的状态copy给i号进程
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* 开始执行0号进程*/
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp\n\t"     /* 将task[pid].thread.sp赋给esp */
            "pushl %1\n\t"          /* 因为当前栈为空,所以esp=ebp,因此此步为push ebp*/
            "pushl %0\n\t"          /* 将当前eip压栈*/
            "ret\n\t"               /* pop task[pid].thread.ip to eip */
            "popl %%ebp\n\t"        //pop ebp
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
        );
    }   //这段汇编代码完成了该进程运行的堆栈环境的初始化。
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)//循环1000万次判断是否需要调度
            {
                printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
                if(my_need_sched == 1)  
                {
                    my_need_sched = 0;  //将进程调度标识符置0
                    my_schedule();     //调度下一个进程
                }
                printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
            }     
        }
    }
    

    myinterrupt.c

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;   //时钟计数
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)//时钟终端1000次,且调度标识符不为1时输出提示,且将调度标识符变为1。
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;     
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)//当当前进程为空或当前下一个进程为空则返回。
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<\n");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)//判断下一个进程是否为正在执行状态
        {
            /* switch to next process */
            asm volatile(   
                "pushl %%ebp\n\t"       //保存当前进程的ebp
                "movl %%esp,%0\n\t"     //将当前进程的esp保存在prev->thread.sp中
                "movl %2,%%esp\n\t"     //将下一个进程的esp(next->thread.sp)放在esp中
                "movl $1f,%1\n\t"       //将1:标志处的内存地址保存在prev->thread.ip中
                "pushl %3\n\t"        //将下一个进程的eip放入栈中
                "ret\n\t"               //释放下一个进程的eip,下一个进程开始执行 
                "1:\t"                  /* next process start here */
                "popl %%ebp\n\t"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);      
        }
        else    //对于还没有执行过的进程的处理
        {
            next->state = 0;  //将进程状态转为执行状态
            my_current_task = next;   
            printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(   
                "pushl %%ebp\n\t"       /* save ebp */
                "movl %%esp,%0\n\t"     /* save esp */
                "movl %2,%%esp\n\t"     /* restore  esp */
                "movl %2,%%ebp\n\t"     /* restore  ebp */
                "movl $1f,%1\n\t"       /* save eip */  
                "pushl %3\n\t"      //保存将当前进程的入口
                "ret\n\t"               /* restore  eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return; 
    }
    
    
    

    总结

    操作系统通过在某种时间片轮转算法下,通过中断和调度机制,不断切换处理各个进程已达到高效处理系统工作任务的目的。



    Sawoom原创作品转载请注明出处
    《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

    相关文章

      网友评论

          本文标题:linux内核分析第二周作业

          本文链接:https://www.haomeiwen.com/subject/bivnkttx.html