在上一篇文章中,我们简单了解一下光流法的原理.
在这一篇文章中,我们使用OpenCV中的calcOpticalFlowPyrLK()函数来实现,是基于金字塔LK光流算法,计算某些点集的稀疏光流。
![](https://img.haomeiwen.com/i3070770/d9f2a352c3ee18d1.jpg)
这个函数的具体介绍在
这个网址有很详细的介绍,一些具体的参数需要去这个网站上看一下.
在接下来,我们来看一下在OpenCV中lk算法的实现.
代码的路径在opencv\sources\samples\python\lk_track.py
代码本身有英文的注释,我一起把注释翻译成中文,捋顺以后发现原理还是很好理解.
import numpy as np
import cv2 as cv
cap = cv.VideoCapture("test.avi")
# params for ShiTomasi corner detection 设置 ShiTomasi 角点检测的参数
feature_params = dict(maxCorners=100,
qualityLevel=0.3,
minDistance=7,
blockSize=7)
# Parameters for lucas kanade optical flow 设置 lucas kanade 光流场的参数
# maxLevel 为使用的图像金字塔层数
lk_params = dict(winSize=(15, 15),
maxLevel=2,
criteria=(cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors 产生随机的颜色值
color = np.random.randint(0, 255, (100, 3))
# Take first frame and find corners in it 获取第一帧,并寻找其中的角点
(ret, old_frame) = cap.read()
old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY)
p0 = cv.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
# Create a mask image for drawing purposes 创建一个掩膜为了后面绘制角点的光流轨迹
mask = np.zeros_like(old_frame)
# 视频文件输出参数设置
out_fps = 12.0 # 输出文件的帧率
fourcc = cv.VideoWriter_fourcc('M', 'P', '4', '2')
sizes = (int(cap.get(cv.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))
out = cv.VideoWriter('E:/video/v5.avi', fourcc, out_fps, sizes)
while True:
(ret, frame) = cap.read()
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# calculate optical flow 能够获取点的新位置
p1, st, err = cv.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points 取好的角点,并筛选出旧的角点对应的新的角点
good_new = p1[st == 1]
good_old = p0[st == 1]
# draw the tracks 绘制角点的轨迹
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv.line(mask, (a, b), (c, d), color[i].tolist(), 2)
frame = cv.circle(frame, (a, b), 5, color[i].tolist(), -1)
img = cv.add(frame, mask)
cv.imshow('frame', img)
out.write(img)
k = cv.waitKey(200) & 0xff
if k == 27:
break
# Now update the previous frame and previous points 更新当前帧和当前角点的位置
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
out.release()
cv.destroyAllWindows()
cap.release()
运行之后的结果:
![](https://img.haomeiwen.com/i3070770/6c9abcaacbc8841e.jpg)
可以看到这个算法实现起来效果很差,不过没关系,到后来一步一步我们的算法会变得很优秀,追踪的效率也会很顺畅.大家亦可以改改里边的参数,发现效果还是有很大的不一样.
最后,有关LK光流法,推荐看一看这一篇论文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》,会有更大的收获.
网友评论