1、分析步骤:
(1)获取数据:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
(2)基本数据处理:缺失值处理、确定特征值,目标值、分割数据
(3)特征工程
(4)机器学习 - 模型训练(逻辑回归)
(5)模型评估:准确率、预测值
2、所需API:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
3、代码示例🌰:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
"""
肿瘤分类分析
"""
# 1、获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
'Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv(
"https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
names=names)
print(data.head())
# 2、基本数据处理
# 2.1、缺失值处理
data = data.replace(to_replace="?", value=np.nan)
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
print("x.head():", x.head())
y = data["Class"]
print("y.head():\n", y.head())
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22, test_size=0.2)
# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
# 4.机器学习 - 模型训练(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
# 5.1 准确率
ret = estimator.score(x_test, y_test)
print("准确率为:\n", ret)
# 5.2 预测值
y_pre = estimator.predict(x_test)
print("模型预测值为:\n", y_pre)
4、示例运行结果:
运行结果.png总结:
-
虽然例子中,运行结果可以看出预测值还是比较高的,但是在很多分类场景当中,我们不一定只关注预测的准确率!!!
在这个癌症例子里,我们并不关注预测的准确率,而是关注在多有的样本当中,癌症患者有没有被全部预测(检测)出来,可以关注精确率、召回率等。 -
简单来说:
- 如果数据中有缺失值,一定要对其进行处理。
- 准确率并不是衡量分类正确的唯一标准。
网友评论