美文网首页
Pandas学习笔记1-基本操作

Pandas学习笔记1-基本操作

作者: 一刀YiDao | 来源:发表于2016-07-23 18:48 被阅读2332次

    Pandas有两种数据结构类型,一个是Series,另一个是DataFrame

    Series

    Series是一种一维数据结构,类似字典或者Numpy中元素带标签的数组。但是比字典更为强大。其中每一个元素都有一个标签(索引),标签可以是数字或者字符串。具有索引,具有键值对应关系,能够排序,切片Slice等等操作。

    DataFrame

    DataFrame是一个二维的表结构。Pandas的DataFrame可以存储许多种不同的数据类型,但是每一个列的数据都是同一个数据类型,并且每一个坐标轴都有自己的标签(索引)。你可以把它想象成一个Series的字典项。

    1.1 创建Series

    利用一个List创建一个Series,Pandas会默认创建整型索引

    import pandas as pd
    import numpy as np
    
    s =pd.Series([0,1,2,3,4,np.NAN,5,'A'])
    
    In [74]:s
    Out[74]: 
    0      0
    1      1
    2      2
    3      3
    4      4
    5    NaN
    6      5
    7      A
    dtype: object
    

    2.1 创建DataFrame

    方法一:使用一个数组array,指定索引,列名

    dates = pd.date_range('20130101',periods=6)
    df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['A','B','C','D'])
    In [76]:df
    Out[76]: 
                       A         B         C         D
    2013-01-01 -2.359309 -0.065001  1.099911 -0.886392
    2013-01-02  0.318336  0.715261  0.060752  1.326758
    2013-01-03  0.515914  1.482326 -0.973154  1.766126
    2013-01-04  1.875221 -0.316619 -0.543997  0.864037
    2013-01-05 -0.697887  0.065137 -0.899040  0.826392
    2013-01-06 -0.205943 -1.532289  1.849114  1.267895
    

    方法二:使用字典创建DataFrame

    df2 = pd.DataFrame({'A':1,
                        'B':pd.Timestamp('20130102'),
                        'C':pd.Series(1,index=range(4)),
                        'D':np.array([3]*4,dtype='int'),
                        'E':'foo'})
    
    In [78]:df2
    Out[78]: 
       A          B  C  D    E
    0  1 2013-01-02  1  3  foo
    1  1 2013-01-02  1  3  foo
    2  1 2013-01-02  1  3  foo
    3  1 2013-01-02  1  3  foo
    

    2.1.1 常用的基本功能

    1、查看前N行或者后M行数据

    In [80]:df.head(2)
    Out[80]: 
                       A         B         C         D
    2013-01-01 -2.359309 -0.065001  1.099911 -0.886392
    2013-01-02  0.318336  0.715261  0.060752  1.326758
    
    In [81]:df.tail(2)
    Out[81]: 
                       A         B         C         D
    2013-01-05 -0.697887  0.065137 -0.899040  0.826392
    2013-01-06 -0.205943 -1.532289  1.849114  1.267895
    

    2、查看索引

    In [82]:df.index
    Out[82]: 
    <class 'pandas.tseries.index.DatetimeIndex'>
    [2013-01-01, ..., 2013-01-06]
    Length: 6, Freq: D, Timezone: None
    

    3、查看值

    In [83]:df.values
    Out[83]: 
    array([[-2.35930948, -0.06500052,  1.09991148, -0.88639213],
           [ 0.31833619,  0.71526129,  0.06075226,  1.32675777],
           [ 0.51591397,  1.48232627, -0.97315391,  1.76612637],
           [ 1.87522057, -0.31661914, -0.54399686,  0.86403681],
           [-0.69788733,  0.06513657, -0.89903951,  0.82639165],
           [-0.20594297, -1.53228941,  1.84911405,  1.26789462]])
    

    4、查看列名

    In [84]:df.columns
    Out[84]: Index([u'A', u'B', u'C', u'D'], dtype='object')In [85]: 
    
    In [85]:df.dtypes
    Out[85]: 
    A    float64
    B    float64
    C    float64
    D    float64
    dtype: object
    

    5、查看数据有多少行

    In [74]:len(df)
    Out[74]: 6
    

    6、查看数据Summary信息(均值、方差、最小、最大,分位数)

    In [9]:df.describe()
    Out[9]: 
                  A         B         C         D
    count  6.000000  6.000000  6.000000  6.000000
    mean   0.329473  0.087595 -0.172075  0.308271
    std    0.595492  1.106105  0.524659  0.864240
    min   -0.218562 -1.454443 -0.992808 -0.790523
    25%    0.112395 -0.458519 -0.362685 -0.434517
    50%    0.135337  0.000715 -0.197997  0.653177
    75%    0.281296  0.630096  0.137386  0.864773
    max    1.490029  1.750290  0.524751  1.195568
    

    7、复制一个完全一样的对象

    In [11]:df2 = df.copy()  
    In [11]:df2
    Out[11]: 
                       A         B         C         D
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    2013-01-03  0.329824  1.750290 -0.085930  0.891737
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
    2013-01-05  0.104873  0.150260  0.211825 -0.790523
    2013-01-06 -0.218562  0.790041 -0.992808  0.783881
    

    8、对数据进行行列转置

    In [12]:df.T
    Out[12]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.134964    1.490029    0.329824    0.135711    0.104873   -0.218562
    B   -1.454443   -0.561749    1.750290   -0.148830    0.150260    0.790041
    C   -0.310064    0.524751   -0.085930   -0.380225    0.211825   -0.992808
    D    1.195568    0.522473    0.891737   -0.753513   -0.790523    0.783881  
    

    9、对数据进行行列转置

    In [12]:df.T
    Out[12]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.134964    1.490029    0.329824    0.135711    0.104873   -0.218562
    B   -1.454443   -0.561749    1.750290   -0.148830    0.150260    0.790041
    C   -0.310064    0.524751   -0.085930   -0.380225    0.211825   -0.992808
    D    1.195568    0.522473    0.891737   -0.753513   -0.790523    0.783881  
    

    10、对数据进行行列转置

    df.set_index=df['A']
    

    11、对数据进行行列转置

    In [74]:df2.columns = ['E','F','G','H']
    In [74]:df2
    Out[74]: 
                       E         F         G         H
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    2013-01-03  0.329824  1.750290 -0.085930  0.891737
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
    2013-01-05  0.104873  0.150260  0.211825 -0.790523
    2013-01-06 -0.218562  0.790041 -0.992808  0.783881
    

    2.1.2 进行选择、过滤、切片等操作

    索引,根据标签(索引)进行行操作

    • loc是字符串标签的索引方法,
    • iloc是数字标签的索引方法,
    • ix是一个字符串标签的索引方法,同样支持数字标签索引作为它的备选。

    备注:ix虽然支持字符和数字切片,但有一些轻微的不可预测性,数字标签可能会让ix做出一些奇怪的事情,例如将一个数字解释成一个位置。而loc和iloc则为你带来了安全的、可预测的。ix要比loc和iloc更快。虽然loc是对字符串进行索引,但是如果索引是数字的时候,loc也可以进行索引,貌似有一点矛盾,需要实操时进行体会。

    1、选择一列

    - 方法一、df['A']
    - 方法二、df.A
    - 方法三、df.loc[:,['A']]
    
    In [20]:df['A']
    Out[20]: 
    2013-01-01    0.134964
    2013-01-02    1.490029
    2013-01-03    0.329824
    2013-01-04    0.135711
    2013-01-05    0.104873
    2013-01-06   -0.218562
    Freq: D, Name: A, dtype: float64
    

    2、选择两列或者多列

    - 方法一、df[['A','B']]
    - 方法二、df.loc[:,['A','B']]
    - 方法三、df.ix[:,['A','B']]
    
    In [20]:df[['A','B']]
    Out[29]: 
                       A         B
    2013-01-01  0.134964 -1.454443
    2013-01-02  1.490029 -0.561749
    2013-01-03  0.329824  1.750290
    2013-01-04  0.135711 -0.148830
    2013-01-05  0.104873  0.150260
    2013-01-06 -0.218562  0.790041
    

    3、根据某一列或者几列进行条件筛选

    In [30]:df[(df.A>0) & (df.B<0)]
    Out[30]: 
                       A         B         C         D
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
    

    4、索引是数字的使用iloc

    In [35]: df1 = pd.DataFrame(np.random.randn(4,4),index=[1,2,3,4],columns=['A','B','C','D'])
    In [36]: df1
    Out[36]: 
              A         B         C         D
    1  0.913335 -0.209641 -0.994628 -0.300057
    2  1.260923  0.405731 -0.566145 -1.114782
    3  0.437972  1.800594 -0.269038 -0.038466
    4 -0.239472  0.290871  0.207056  0.105834
    
    #查看某一行
    In [40]: df.iloc[3]
    Out[40]: 
    A    0.135711
    B   -0.148830
    C   -0.380225
    D   -0.753513
    Name: 2013-01-04 00:00:00, dtype: float64
    
    #由于df1的索引是数字,体会一会这里使用loc和iloc的区别
    In [25]:df1.loc[1:2]
    Out[25]: 
              A         B         C         D
    1 -0.762372 -0.390335  0.037414  2.104834
    2  1.265755 -0.113307  1.443822 -2.765101
    
    In [26]:df1.iloc[1:2]
    Out[26]: 
              A         B         C         D
    2  1.265755 -0.113307  1.443822 -2.765101
    
    #查看第二行到第三行
    In [69]:df.iloc[1:3,:]
    Out[69]: 
                       A         B         C         D
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    2013-01-03  0.329824  1.750290 -0.085930  0.891737
    
    #查看第一行到第二行,第一列到第三列
    In [70]:df.iloc[0:2,0:3]
    Out[70]: 
                       A         B         C
    2013-01-01  0.134964 -1.454443 -0.310064
    2013-01-02  1.490029 -0.561749  0.524751
    
    #挑某几列进行查看,如位置第1,2,4行,第0,2列
    In [71]:df.iloc[[1,2,4],[0,2]]
    Out[71]: 
                       A         C
    2013-01-02  1.490029  0.524751
    2013-01-03  0.329824 -0.085930
    2013-01-05  0.104873  0.211825
    

    5、索引不是数字,是字符的使用loc

    #索引是Date挑 '2013-01-03':'2013-01-05'几行
    In [54]:df.loc['2013-01-03':'2013-01-05']
    Out[54]: 
                       A        B         C         D
    2013-01-03  0.329824  1.75029 -0.085930  0.891737
    2013-01-04  0.135711 -0.14883 -0.380225 -0.753513
    2013-01-05  0.104873  0.15026  0.211825 -0.790523
    
    In [55]:df.ix['2013-01-03':'2013-01-05']
    Out[55]: 
                       A        B         C         D
    2013-01-03  0.329824  1.75029 -0.085930  0.891737
    2013-01-04  0.135711 -0.14883 -0.380225 -0.753513
    2013-01-05  0.104873  0.15026  0.211825 -0.790523
    
    #第1到3列
    In [53]:df.iloc[:,1:3]
    Out[53]: 
                       B         C
    2013-01-01 -1.454443 -0.310064
    2013-01-02 -0.561749  0.524751
    2013-01-03  1.750290 -0.085930
    2013-01-04 -0.148830 -0.380225
    2013-01-05  0.150260  0.211825
    2013-01-06  0.790041 -0.992808
    
    # 第3到5行,A、B列
    In [52]:df.loc['2013-01-03':'2013-01-05',['A','B']]
    Out[52]: 
                       A        B
    2013-01-03  0.329824  1.75029
    2013-01-04  0.135711 -0.14883
    2013-01-05  0.104873  0.15026
    
    In [56]:df.ix[1:2]
    Out[56]: 
                       A         B         C         D
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    

    6、排序

    #对索引排序
    In [57]:df.sort_index(ascending=False)
    Out[57]: 
                       A         B         C         D
    2013-01-06 -0.218562  0.790041 -0.992808  0.783881
    2013-01-05  0.104873  0.150260  0.211825 -0.790523
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
    2013-01-03  0.329824  1.750290 -0.085930  0.891737
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568
    
    
    #根据某一列进行排序
    In [58]:df.sort(columns='B')
    Out[58]: 
                       A         B         C         D
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
    2013-01-05  0.104873  0.150260  0.211825 -0.790523
    2013-01-06 -0.218562  0.790041 -0.992808  0.783881
    2013-01-03  0.329824  1.750290 -0.085930  0.891737
    
    
    
    #根据某几列进行排序
    In [59]:df.sort(columns=['A','B'])
    Out[59]: 
                       A         B         C         D
    2013-01-06 -0.218562  0.790041 -0.992808  0.783881
    2013-01-05  0.104873  0.150260  0.211825 -0.790523
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
    2013-01-03  0.329824  1.750290 -0.085930  0.891737
    2013-01-02  1.490029 -0.561749  0.524751  0.522473
    
    
    

    7、缺失值处理

    In [66]:df3 = df.reindex(index=dates[0:4], columns = list(df.columns)+['E'])
    In [66]:df3.loc[dates[0]:dates[1],['E']]=1
    In [66]:df3
    Out[63]: 
                       A         B         C         D   E
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568   1
    2013-01-02  1.490029 -0.561749  0.524751  0.522473   1
    2013-01-03  0.329824  1.750290 -0.085930  0.891737 NaN
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513 NaN
    
    
    # 删除缺失值
    In [60]: df3.dropna(how='any')
    Out[60]: 
                       A         B         C         D  E
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568  1
    2013-01-02  1.490029 -0.561749  0.524751  0.522473  1
    
    
    # 对缺失值进行填充
    In [68]:df3.fillna(value=5)
    Out[68]: 
                       A         B         C         D  E
    2013-01-01  0.134964 -1.454443 -0.310064  1.195568  1
    2013-01-02  1.490029 -0.561749  0.524751  0.522473  1
    2013-01-03  0.329824  1.750290 -0.085930  0.891737  5
    2013-01-04  0.135711 -0.148830 -0.380225 -0.753513  5
    
    

    2.1.3 使用函数求值以及Apply的使用方法

    In [69]:df.mean()
    Out[69]: 
    A    0.634212
    B   -0.517503
    C   -0.360313
    D   -0.178633
    dtype: float64
    
    
    In [70]:df.apply(np.cumsum)
    Out[70]: 
                       A         B         C         D
    2013-01-01 -1.083703 -0.984847  0.231595  0.764466
    2013-01-02 -0.277971 -0.737865 -0.366301 -0.768202
    2013-01-03 -0.271485 -1.006928 -0.246741 -0.483353
    2013-01-04  2.491598  0.096372 -2.159432 -0.331738
    2013-01-05  2.624991 -1.882532 -2.445247 -1.636275
    2013-01-06  3.805273 -3.105017 -2.161877 -1.071797
    
    In [71]:df.apply(lambda x: x.max() - x.min())
    Out[71]: 
    A    3.846786
    B    3.082203
    C    2.196061
    D    2.297133
    dtype: float64
    
    
    

    未完待续,接着在Pandas学习笔记二中继续学习...

    相关文章

      网友评论

          本文标题:Pandas学习笔记1-基本操作

          本文链接:https://www.haomeiwen.com/subject/bsjwjttx.html