美文网首页
TinyPerson_v2

TinyPerson_v2

作者: Yah_da | 来源:发表于2021-06-09 15:03 被阅读0次
    • Big table

    GPU: 3080 x2
    train set: train + val; eval set: test
    cut size: (640, 640)

    detector batch lr AP_{50} AP_{50}^{tiny} script
    Faster RCNN 4x2 0.04 67.36
    73.44
    54.51
    60.78
    exp/sh/Baseline_TinyPersonV2.sh:1.3
    RetinaNet 4x2 0.04 54.03
    72.75
    42.11
    59.45
    exp/sh/Baseline_TinyPersonV2.sh:2.1
    Adap RetinaNet 3x2 0.04 74.19 63.78 exp/sh/Baseline_TinyPersonV2.sh:2.2
    FCOS 4x2 0.04 48.09
    65.08
    41.39
    54,37
    exp/sh/Baseline_TinyPersonV2.sh:3.1
    Adap FCOS 4x2 0.04 65.32
    71.59
    54.02
    60.98
    exp/sh/Baseline_TinyPersonV2.sh:3.2
    RepPoint 4x2 0.04 54.71
    73.47
    43.18
    60.79
    exp/sh/Baseline_TinyPersonV2.sh:4.1
    Adap RepPoint 4x2 0.04 68.92
    75.27
    56.17
    64.56
    exp/sh/Baseline_TinyPersonV2.sh:4.2
    • 目录结构

    数据集位置:~/dataset/tiny_set_v2
    数据集来源:17suo(基础) + tiny_set_v1
    规则:模态/视频号/图片
    划分:10: 1 : 10(视频号级别)

    • TinyPerson_v2(RGB)

    Tab. 1. 目标size ratio统计.

    dataset_v3.0.1 absolute size relative size aspect ratio
    TinyPerson_v2 (rgb) 23.197±9.815 0.016±0.007 0.731±0.422
    TinyPerson_v2 (infra) 12.614±4.817 0.017±0.006 0.827±0.422
    dataset_v2.0.1 absolute size relative size aspect ratio
    TinyPerson_v2 (rgb) 22.692±12.117 0.016±0.008 0.746±0.509
    TinyPerson_v2 (rgb without ignore) 22.619±10.849 0.016±0.007 0.723±0.424
    TinyPerson_v2 (xray) 13.551±5.078 0.018±0.007 0.874±0.495
    TinyPerson_v2 (xray without ignore) 13.615±5.099 0.018±0.007 0.862±0.481
    TinyPerson

    Tab. 2. 数据集图片与标注数量.

    TinyPerson_v3.0.1 Train set Valid set Test set sum
    #image (rgb) 4614 375 3559 8548
    #image (infra) 4614 375 3559 8548
    #annotation (rgb) 170383 16408 275486 462277
    #annotation (infra) 172190 16447 228775 417412
    TinyPerson_v2.0.1 Train set Valid set Test set sum
    #image (rgb) 5711 568 5753 (5754?) 12032
    #image (xray) 8938 906 8950 18794
    #annotation (rgb) 262063 42399 315165 619627
    #annotation (xray) 390356 72525 291968 754849
    TinyPerson

    Fig. 分布.


    TinyPerson

    [Issue]

    • issue: 无法算均值方差,存在annitation的bbox为nan
    • issue: 复杂bug(7.9)>> [继续train]
    • issue: >> [继续train]
      --resume-from + {dir/} + epoch_9.pth
    --resume-from ../TOV_mmdetection_cache/work_dir/${CONFIG}/trainval${WH[0]}x${WH[1]}_lr${LR}_clipg10_1x_b${B}${GPU}g/epoch_9.pth
    
    • issue: >> [re-test]
      evaluation.do_final_eval=True \
      --resume-from + {dir/} + epoch_9.pth
    evaluation.do_final_eval=True \
    --resume-from ../TOV_mmdetection_cache/work_dir/${CONFIG}/trainval${WH[0]}x${WH[1]}_lr${LR}_1x_b${B}${GPU}g/epoch_12.pth
    
    
    • issue: >> [删除无用Epoch]
      $python exp/tools/clear_tmp_pth.py ../TOV_mmdetection_cache/work_dir/

    • issue: 发散 >> [clip_g]
      梯度过大,loss发散,但仍需训练。可改进网路,增加梯度裁剪。


      issue 1: loss不收敛
    issue 2: loss NaN,程序退出

    FCOS

    """
    "configs2/TinyPersonV2/base/fcos_r50_caffe_fpn_gn-head_1x_TinyPersonV2_640.py"
    """
    optimizer_config = dict(    # wd: 改小grad_clip['max_norm']
        _delete_=True, grad_clip=dict(max_norm=15, norm_type=2))
    # optimizer_config = dict(
    #     _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
    
    # learning policy
    lr_config = dict(
        warmup_iters=500,)    # wd: 观察500 iters
    

    RetinaNet

    """
    "configs2/TinyPersonV2/base/retinanet_r50_fpn_1x_TinyPersonV2_640.py"
    """
    optimizer_config = dict(    # wd: 改小grad_clip['max_norm']
        _delete_=True, grad_clip=dict(max_norm=15, norm_type=2))
    # optimizer_config = dict(
    #     _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
    
    # learning policy
    lr_config = dict(
        warmup_iters=500,)    # wd: 观察500 iters
    

    # xb exp
    python exp/tools/semi_coarse_point_manager.py
    python exp/tools/coarse_point_manager.py
    

    相关文章

      网友评论

          本文标题:TinyPerson_v2

          本文链接:https://www.haomeiwen.com/subject/bswleltx.html