美文网首页GEO
学习笔记

学习笔记

作者: 医只蜗牛 | 来源:发表于2021-07-18 11:05 被阅读0次

    【00】

    GEO数据库。与后面差不多。

    【PCA,KEGG,GO,火山图等】

    > getwd()
    [1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/00_TNBC_GSE76275"
    > dir()
     [1] "exprSet_by_group.Rdata"        "finalSet.Rdata"               
     [3] "GPL570.annot.gz"               "GSE76275_eSet.Rdata"          
     [5] "GSE76275_series_matrix.txt.gz" "heatmap_top100_logFC.png"     
     [7] "ID2gene.Rdata"                 "kegg_up_down.png"             
     [9] "nrDEG.out"                     "nrDEG_by_logFC.Rdata"         
    [11] "pca_plot.png"                  "readme.txt"                   
    [13] "Step01_getGEO.R"               "step02_getmarix.R"            
    [15] "step03_gene_symbol.R"          "step04_rm_nogene.R"           
    [17] "step05_PCA.R"                  "step06_DEG.R"                 
    [19] "step07_pheatmap.R"             "Step08_Volcano_plot.R"        
    [21] "step09_KEGG_GO.R"              "TNBC_breastcancer.Rproj"      
    [23] "volcano.png"    
    

    【1】.02_GSE108565【比较完整】

    .GEO:【hclust富集分析,DEG(limma包),volcano,heatmap,KEGG,GO分析】

    dir()
     [1] "02_GSE108565.Rproj"          
     [2] "dotplot_gene_diff_BP.png"    
     [3] "dotplot_gene_diff_CC.png"    
     [4] "dotplot_gene_diff_MF.png"    
     [5] "dotplot_gene_down_BP.png"    
     [6] "dotplot_gene_down_CC.png"    
     [7] "dotplot_gene_down_MF.png"    
     [8] "dotplot_gene_up_BP.png"      
     [9] "dotplot_gene_up_CC.png"      
    [10] "dotplot_gene_up_MF.png"      
    [11] "final_exprSet.Rdata"         
    [12] "go_enrich_results.Rdata"     
    [13] "gset.Rdata"                  
    [14] "hclust.png"                  
    [15] "heatmap.png"                 
    [16] "kegg_up_down.png"            
    [17] "nrDEG.out"                   
    [18] "nrDEG.Rdata"                 
    [19] "pca_plot.png"                
    [20] "step01_download.R"           
    [21] "step02_handle_data.R"        
    [22] "step03_DEG_heatmap_volcano.R"
    [23] "step04_KEGG_GO.R"            
    [24] "volcano.png"   
    

    【2】.UCSCXenaTools

    【使用UCSCXenaTools下载TCGA数据并处理】
    dir()
     [1] "01_UCSCXenaTools_download.R"       
     [2] "02_UCSCXenaTools_.R"               
     [3] "03_TCGA-BRCA.Rproj"                
     [4] "GDCdata"                           
     [5] "MANIFEST.txt"                      
     [6] "race_sample.Rdata"                 
     [7] "step01_download_handle.R"          
     [8] "TCGA-BRCA.GDC_phenotype_file.Rdata"
     [9] "TCGA-BRCA.GDC_phenotype_file.tsv"  
    [10] "TCGA-BRCA.htseq_counts.Rdata"      
    [11] "TCGA-BRCA.htseq_counts.tsv"        
    [12] "必读.txt"    
    
     getwd()
    [1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/03_TCGA-BRCA"
    

    【3】下载合并TCGA文件

    【合并文件(★),lncRNA,miRNA的提取,相关注释】
    【未完成:①ncRNA的表达谱标准化一下,再自行下载microRNA的数据,就可以构建ceRNA的网络 ②按照pvalue和fc来排序,选择自己一定数量的基因,数量你来定,最终得到基因列表gene(我没有演示,需要自己做)】

    【此处GO分析和KEGG分析似乎与TCGA不太一样,后面再看看】

    dir()
     [1] "02_GTF_mRNA_ncRNA.R"                       
     [2] "03_DESeq.R"                                
     [3] "04_01_DIY.R"                               
     [4] "04_02_DIY.R"                               
     [5] "04_GO_KEGG.R"                              
     [6] "04_test.Rproj"                             
     [7] "BRCA_DEG.xls"                              
     [8] "dds_DEseq.Rda"                             
     [9] "expr_df.Rda"                               
    [10] "expr_df_nopoint.Rda"                       
    [11] "gdc_download_20210717_084045.768266"       
    [12] "gdc_download_20210717_084045.768266.tar.gz"
    [13] "gdc_manifest_20210717_083623.txt"          
    [14] "gtf_df.Rda"                                
    [15] "Homo_sapiens.GRCh38.104.chr.gtf"           
    [16] "Homo_sapiens.GRCh38.104.chr.gtf.gz"        
    [17] "Homo_sapiens.GRCh38.104.chr.gtf0000"       
    [18] "LuminalABvsNormal_FC6.TSS.pdf"             
    [19] "MANIFEST.txt"                              
    [20] "metadata.cart.2021-07-17.json"             
    [21] "metadata.Rda"                              
    [22] "mRNA_exprSet.Rda"                          
    [23] "mRNA_exprSet_vst.Rda"                      
    [24] "readme.txt"                                
    [25] "resSig.Rdata"                              
    [26] "result.Rda"                                
    [27] "TCGA-BRCA.htseq_counts.tsv"                
    [28] "TCGA-BRCA.htseq_counts.tsv.gz"             
    [29] "volcano.png"                               
    
    
    
     getwd()
    [1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/04_test"
    
    

    【4】这里是比较TP53的。跟【3】有类似之处。可以结合起来看。

    【亮点:先将火山图和热图的代码用函数包装起来,然后,进行limma或edge进行差异分析,最后再画图】【KEGG和GO富集分析也是同样的】

    【这里的函数包可以直接调用到别处】

    【中间问题:】

      ggsave( volcano, filename = './fig/volcano.png' ))
    
    ###出现报错,运行【1】同样的代码,未报错,原因未明
    
    报错图片
    dir()
    [1] "data"                 "fig"                 
    [3] "nrDEG.Rdata"          "raw_data"            
    [5] "step01_downpackage.R" "step02_download.R"   
    [7] "step03_DEG.R"         "step04_KEGG_GO.R"    
    [9] "TP53_BACR.Rproj"     
    > dir()
    [1] "data"                 "fig"                 
    [3] "nrDEG.Rdata"          "raw_data"            
    [5] "step01_downpackage.R" "step02_download.R"   
    [7] "step03_DEG.R"         "step04_KEGG_GO.R"    
    [9] "TP53_BACR.Rproj"     
    > getwd()
    [1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/01_TP53_BRCA"
    

    【05】

    【shell】cd/d D:

    D:\R_code\follow_practice>cd/d xuetu_GEO_follow/week_practise/01_follow_practise/05_GBM_GSE4290/shell
    
    
    
    

    【06】

    GEO数据挖掘-第三期-口腔鳞状细胞癌(OSCC)

    【绘制进化树 WGCNA】【构建共表达矩阵】【TOM图】

    
    




    2021.7.23 22:30

    生存分析

    以下内容重要

    【生存分析】

    存在问题:用包下载的方式和直接网上下载的存在差异。读取有异常。因此建议直接网上下载在分析。

    R基于TCGA数据画生存曲线

    ##来源
    "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/02_follow/02_TCGA_KM_KIRC"
    
    

    后面分析内容

    相关文章

      网友评论

        本文标题:学习笔记

        本文链接:https://www.haomeiwen.com/subject/btnopltx.html