美文网首页药物数据库
网络药理学学习记录8:预测药物的ADME性质

网络药理学学习记录8:预测药物的ADME性质

作者: 柳叶刀与小鼠标 | 来源:发表于2021-02-08 14:17 被阅读0次

SwissADME
http://www.swissadme.ch/

SwissADME网站可以计算一个或多个小分子的理化指标,并预测ADME参数,药代动力学特性,类药物性质和药物化学友好性,以支持药物发现。这是一个免费的Web工具,用于评估小分子的药代动力学,药物相似性和药物化学友好性。这是由瑞士生物信息学研究所分子建模小组开发和维护。ADME是Absorption, distribution, metabolism, excretion and toxicity (ADMET) 的缩写。

  • 输入smile,点击run


  • 结果生成


Swissadme结果分析范例:
(1)

Lipinskis rule of 5 was used to predict the drug-likeness of our hits from the ZINC15 library. Lipinskis rule of 5 states that for any ligand to be considered as a drug-like, a molecule should obey these criteria: molecular weight <500 Dalton, number of H-bond donors <5, number of H-bond acceptors <10 and LogP <5 (Lipinski, 2004). Accordingly, all of our hits obeyed this rule and thus considered as drug-like compounds. Furthermore, our compounds were found to be within the reference range considering their water solubility (LogS), Caco-2 permeability and topological polar surface area (TPSA) (Table 4).

(2)

Ligands with high solubility and bioavailability were further taken for the interaction analysis.

(3)

The drug likeliness of a molecule is indicated by the Lipinski’s rule of five parameters (molecular weight <500 Da, no more than 5 hydrogen bond donors, no. of hydrogen bond acceptors should be less than 10 and logP should not be greater than 5). The Lipinski’s rule of five parameters were obtained from the SWISSADME server (www.swissadme.ch/index.php) (Daina et al., 2017). The chemical structures, chemical formula and the Lipinski’s rule parameters of the ligands are listed in Table S1 (Supplementry Information).

(4)

Since in silico ADMET prediction can help early drug design and evaluation, ADMET properties of the 67 key compounds were predicted by SwissADME and pkCSM. Chemical properties including molecular weight (MW), rotatable bonds count, H-bond acceptors and donors count, TPSA and leadlikeness violations were calculated by SwissADME and shown as Fig. 8A. It is worth mentioning that 21 (31.34 %) compounds passed the stringent lead-like criteria (250 g/mol ≤ MW ≤ 350 g/mol, XLOGP ≤ 3.5 and rotatable bonds ≤ 7), which are excellent candidates for drug discovery (Fig. 7A). And these lead-likeness compounds were further predicted by pkCSM, with the exception of S3 (low gastrointestinal absorption)

相关文章

  • 网络药理学学习记录8:预测药物的ADME性质

    SwissADMEhttp://www.swissadme.ch/[http://www.swissadme.ch...

  • 临床前毒理学研究

    统计数据表明,在1991年,药代动力学性质(PK)不佳是药物发现的主要阻碍。截至2000年,影响ADME(吸收、分...

  • AI守望者(2021-03-17)

    AI守望者为您推送今日科技资讯简报: 1.图学习+分子表示学习,飞桨刷新药物分子性质预测榜单[http://mp....

  • 网络药理学学习记录5:ADMET和毒性预测

    ADMET 性质预测 采用 Discovery Studio,以一组小分子化合物为实例,计算其 ADMET 性质并...

  • Arxiv网络科学论文摘要9篇(2021-02-01)

    AGSTN:学习注意力调整后的图时空网络,用于短期城市传感器值预测; BridgeDPI:预测药物-蛋白质相互作用...

  • 什么是药理学?

    我们先来看一下药理学的定义: 药理学是研究药物与机体相互作用规律和原理的一门学科。主要由药物效应动力学和药物代谢动...

  • 八.药理学知识

    药理学知识 (一)药物效应动力学 1.药物的基本作用 2.药物剂量与效应的关系 3.药物作用的机制 (二)药物代谢...

  • 读书笔记《心理学与生活》37

    【1】 生物医学治疗: 1、药物治疗:心里药理学——主要研究药物对行为的作用——重症病人——治疗药物(有副作用):...

  • 网络药理学学习记录3

    AutoDock软件的安装 整个软件的安装分为三步 (1)下载和安装python2.5.4软件的执行脚本使用的是p...

  • 网络药理学学习记录2

    AutoDock半柔性对接 1.准备文件和设置工作目录 (1)设置该文件夹为工作目录。 注:该文件夹所有路径均要求...

网友评论

    本文标题:网络药理学学习记录8:预测药物的ADME性质

    本文链接:https://www.haomeiwen.com/subject/btnxxltx.html