美文网首页
无标题文章

无标题文章

作者: 楚怀哲 | 来源:发表于2017-08-09 21:48 被阅读0次

    利用SVM进行人脸识别实例:

    from future import print_function

    from time import time
    import logging
    import matplotlib.pyplot as plt

    from sklearn.cross_validation import train_test_split
    from sklearn.datasets import fetch_lfw_people
    from sklearn.grid_search import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import RandomizedPCA
    from sklearn.svm import SVC

    print(doc)

    Display progress logs on stdout

    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

    ###############################################################################

    Download the data, if not already on disk and load it as numpy arrays

    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

    introspect the images arrays to find the shapes (for plotting)

    n_samples, h, w = lfw_people.images.shape

    for machine learning we use the 2 data directly (as relative pixel

    positions info is ignored by this model)

    X = lfw_people.data
    n_features = X.shape[1]

    the label to predict is the id of the person

    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]

    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)

    ###############################################################################

    Split into a training set and a test set using a stratified k fold

    split into a training and testing set

    X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25)

    ###############################################################################

    Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled

    dataset): unsupervised feature extraction / dimensionality reduction

    n_components = 150

    print("Extracting the top %d eigenfaces from %d faces"
    % (n_components, X_train.shape[0]))
    t0 = time()
    pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))

    eigenfaces = pca.components_.reshape((n_components, h, w))

    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))

    ###############################################################################

    Train a SVM classification model

    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
    'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
    clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid)
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)

    ###############################################################################

    Quantitative evaluation of the model quality on the test set

    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))

    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

    ###############################################################################

    Qualitative evaluation of the predictions using matplotlib

    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
    """Helper function to plot a gallery of portraits"""
    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
    plt.subplot(n_row, n_col, i + 1)
    plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
    plt.title(titles[i], size=12)
    plt.xticks(())
    plt.yticks(())

    plot the result of the prediction on a portion of the test set

    def title(y_pred, y_test, target_names, i):
    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
    return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

    prediction_titles = [title(y_pred, y_test, target_names, i)
    for i in range(y_pred.shape[0])]

    plot_gallery(X_test, prediction_titles, h, w)

    plot the gallery of the most significative eigenfaces

    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)

    plt.show()

    相关文章

      网友评论

          本文标题:无标题文章

          本文链接:https://www.haomeiwen.com/subject/bufhlxtx.html