美文网首页
ThreadPoolExecutor源码浅析

ThreadPoolExecutor源码浅析

作者: zZeroZz | 来源:发表于2020-05-12 10:38 被阅读0次

状态常量及其标志位获取方法

public class ThreadPoolExecutor extends AbstractExecutorService {

// 线程池状态控制位
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

// 偏移量,高3位存线程池的状态,其他29位存线程数
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// 线程池运行状态 11100000000000000000000000000000
private static final int RUNNING    = -1 << COUNT_BITS;

// 线程池关闭状态,拒绝新线程,等待池中、工作队列中线程完成 00000000000000000000000000000000 ;
private static final int SHUTDOWN   =  0 << COUNT_BITS;

// 线程池停止状态,拒绝新线程,会中断池中、工作队列中线程 00100000000000000000000000000000;
private static final int STOP    =  1 << COUNT_BITS;

// 整理状态,线程池与工作队列都已经空了 01000000000000000000000000000000
private static final int TIDYING    =  2 << COUNT_BITS;

// 终止状态 01100000000000000000000000000000
private static final int TERMINATED =  3 << COUNT_BITS;

// 灵巧的从32进制位中取出需要的状态码
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c)  { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

关键属性

// 工作队列
private final BlockingQueue<Runnable> workQueue;

// 独占重入锁,用于锁住并发操作
private final ReentrantLock mainLock = new ReentrantLock();

// 线程池
private final HashSet<Worker> workers = new HashSet<Worker>();

// 重入锁条件
private final Condition termination = mainLock.newCondition();

// 获取的最大池大小
private int largestPoolSize;

// 已经完成的任务
private long completedTaskCount;

// 线程工厂
private volatile ThreadFactory threadFactory;

// 拒绝策略
private volatile RejectedExecutionHandler handler;

// 线程活跃时间,超过则回收,allowCoreThreadTimeOut为false的时候,针对的是>corePoolSize的那一部分
private volatile long keepAliveTime;

// 是否可以回收核心线程,空闲时间,设置为true后,核心线程也会在>keepAliveTime时被回收
private volatile boolean allowCoreThreadTimeOut;

// 池核心线程数
private volatile int corePoolSize;

// 池最大线程数
private volatile int maximumPoolSize;

// 默认的拒绝策略,策略为拒绝新任务,且抛出异常
private static final RejectedExecutionHandler defaultHandler =
    new AbortPolicy();

工作线程

继承了AQS接口,实现自定义的锁机制

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    private static final long serialVersionUID = 6138294804551838833L;

    // 运行任务的线程
    final Thread thread;
    
    // 执行的第一个任务
    Runnable firstTask;
    
    // 当前工作者,已经执行完成的任务
    volatile long completedTasks;

    Worker(Runnable firstTask) {
        
        // 锁状态为-1,原因是,直到runWorker前不也中断,在runWorker,将state由-1->0 
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }

    public void run() {
        runWorker(this);
    }

    protected boolean isHeldExclusively() {
        return getState() != 0;
    }

    protected boolean tryAcquire(int unused) {
        if (compareAndSetState(0, 1)) {
            setExclusiveOwnerThread(Thread.currentThread());
            return true;
        }
        return false;
    }

    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }

    public void lock()        { acquire(1); }
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); }
    public boolean isLocked() { return isHeldExclusively(); }

    void interruptIfStarted() {
        Thread t;
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }
}

executor

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    
    // 获取线程状态
    int c = ctl.get();
    
    // 判断线程数是否小于核心线程数
    if (workerCountOf(c) < corePoolSize) {
    
        // 创建工作线程,关联任务
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    
    // 大于核心数、线程池是否是在运行,RUNING状态,且加入工作队列
    if (isRunning(c) 
        && workQueue.offer(command)) {
        
        // 入队成功后,需要重新检查,是否池还在RUNING,不在的话需要删除入队的任务
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
        
            // 并启用拒绝策略
            reject(command);
        
        // 如果线程池空了,则需要创建一个工作线程来执行任务。    
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    
    // 如果入队失败,则代表工作队列满了,则启用拒绝策略
    else if (!addWorker(command, false))
        reject(command);
}

submit

submit与execute的区别主要是有任务的返回结果,ThreadPoolExecutor没有对其重写,用的是父类的AbstractExecutorService

public Future<?> submit(Runnable task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<Void> ftask = newTaskFor(task, null);
    execute(ftask);
    return ftask;
}
public <T> Future<T> submit(Runnable task, T result) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<T> ftask = newTaskFor(task, result);
    execute(ftask);
    return ftask;
}
public <T> Future<T> submit(Callable<T> task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<T> ftask = newTaskFor(task);
    execute(ftask);
    return ftask;
}

addWorker

private boolean addWorker(Runnable firstTask, boolean core) {
    // 标号
    retry:
    
    // 自旋
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        /* 
         * 有两种情况可以创建线程,接收新任务,所以才会有以下两个判断
         * 1.线程池是runing状态。
         * 2.线程池是shutdown状态,但是此时还可以接收工作队列中的任务
         */
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        // 自旋增加线程数
        for (;;) {
            int wc = workerCountOf(c);
            
            // 当前工作线程数是否大于允许最大容量
            if (wc >= CAPACITY ||
                // 当前线程是否是核心线程,是核心线程
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
                // 退出循环到标号位置
                break retry;
            c = ctl.get();  // Re-read ctl
            
            // 线程池状态是否已经改变
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    // 线程数增加后,需要创建线程,为了保证原子性且hashMap是非线程安全的,故加锁
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    // 这个是shutdown的时候留给执行工作队列的条件
                    (rs == SHUTDOWN && firstTask == null)) {
                    
                    // 如果线程已经启动了抛出异常(不是Worker启动的),因为我们还没有调用
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    
                    // 加入线程池,即hashSet中
                    workers.add(w);
                    
                    // 记录历史最大的线程数
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                // 启动线程,内部run方法调用runWorker
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            // 如果线程启动失败了,需要对应处理
            addWorkerFailed(w);
    }
    return workerStarted;
}

runWorker

// Worker 线程中run调用了 runWorker
public void run() {
    runWorker(this);
}

final void runWorker(Worker w) {
    
    // 获取工作线程
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    
    // 清空初始的任务
    w.firstTask = null;
    
    // 将锁状态state由-1改为0,即可以中断,其他线程可以获取改worker
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
    
        // 如果task不为空,则代表工作线程关联的任务还没执行,需要执行。
        while (task != null || 
            
            // 线程池中的任务处理完了,才会处理缓冲队列中的任务
            // 如果task为空,则从工作队列中获取任务,此处会一直循环,直到工作缓冲队列里面的任务全部执行完
            (task = getTask()) != null) {
            
            // 获取任务之后,进行加锁,防止在任务执行期间,其他线程调用了shutdown(只会中断被阻塞挂起的线程)后,正在执行的任务被中断。
            w.lock();

            //如果池停止,确保线程被中断
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 // 二次操作,重新设置中断标志状态
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                // 中断线程
                wt.interrupt();
            try {
                // 空方法,留给自己重写自定义特性的
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                
                    // 调用任务的run方法
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    // 空方法,留给自己重写自定义特性的
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        // 设置改任务是正常执行完成的
        completedAbruptly = false;
    } finally {
        /*
         * 任务执行完成之后,需要做一些操作
         * 比如移除hashSet中的Worker,完成任务数的累计、空闲线程的回收,资源的处理等等
         */   
        processWorkerExit(w, completedAbruptly);
    }
}

processWorkerExit

任务完成后,移除对应的工作者,缩小线程池

private void processWorkerExit(Worker w, boolean completedAbruptly) {
    
    // 如果任务不是正常完成的,则将线程池线程数置为0
    if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
        // 内部是循环CAS减
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 累计完成的任务数,移除完成的工作者
        completedTaskCount += w.completedTasks;
        workers.remove(w);
    } finally {
        mainLock.unlock();
    }

    // 尝试终止线程池
    tryTerminate();

    // 缩小线程池,如果线程池是 RUNNING或者SHUTDOWN状态,则保证至少有一个线程执行任务
    int c = ctl.get();
    if (runStateLessThan(c, STOP)) {
        if (!completedAbruptly) {
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && ! workQueue.isEmpty())
                min = 1;
            if (workerCountOf(c) >= min)
                return; // replacement not needed
        }
        addWorker(null, false);
    }
}

getTask

获取工作队列中的任务,未完待续

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        
        // 1.如果池状态为SHUTDOWN,且队列为空,(SHUTDOWN的时候,会把队列任务处理完)
        // 2.如果池状态STOP、TYDING、TERMINATE(STOP不在接收与处理任务,会中断正在处理的任务)
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            // 重置线程池数为0
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

相关文章

网友评论

      本文标题:ThreadPoolExecutor源码浅析

      本文链接:https://www.haomeiwen.com/subject/bunvnhtx.html