美文网首页大数据
F-test 和 t- test 小总结

F-test 和 t- test 小总结

作者: 不连续小姐 | 来源:发表于2018-12-29 05:49 被阅读5次

Data Science Day 21: F -test and t-test

From last time we know t-test is used for comparing the mean of 2-level categorical variable and ANOVA is used for comparing the mean value of a 3-level categorical variable or more.

Question:

However, there is a question bugs me, why both T-test and ANOVA are comparing the mean value, but** one P-value comes from the t-test and the other P-value is derived from the F-test**?

[caption id="attachment_1249" align="alignnone" width="300"] image

Pexels / Pixabay[/caption]

I did a bit research into this and discussed with little Rain, then we found out the key relation to answer is the equivalence of F and t-test.

Answer:

F= t^{2}

image

The hidden reason is when pair of the sample are normally distributed then the ratios of variance of sample in each pair will always follow the same distribution. Therefore, the t-test and F-test generate the same p-values.

Example : F-test vs t-test in Blood pressure decrease dataset

We want to know if the blood pressure medication has changed the blood pressure for 15 patients after 6 months.

test=pd.DataFrame({"score_decrease": [ -5, -8, 0, 0, 0 ,2,4,6,8, 10,10, 10,18,26,32] })
center=pd.DataFrame({"score_remained": [ 0, 0, 0, 0, 0 ,0,0,0,0, 0,0, 0,0,0,0] })
image

F-test results:

scipy.stats.f_oneway(score_decrease,score_remained)
F_onewayResult(statistic=array([ 7.08657734]), pvalue=array([ 0.01272079]))

t-test results:

scipy.stats.ttest_ind(score_decrease, score_remained)
Ttest_indResult(statistic=array([ 2.66206261]), pvalue=array([ 0.01272079]))

As we can see the F-test and t-test have the same P-value= 0.0127.

I used SAS to generate a graph:

ods graphics on; 
proc ttest h0=0 plots(showh0) sides=u alpha=0.05;
var decrease;
run;
ods graphics off;
image

Summary:

Except for F=t^2, I summarized a table for F-test and t-test.

t- test & F-test Assumption

  1. Observations are Independent and Random
  2. The population are Normally distributed
  3. No outliers

t-test Null-hypothesis:

The mean value of the two groups are the same.
The mean value = n0.

F-test Null hypothesis:

The mean value of three or more groups are the same.
N1=N2=N3…

t-test Features

The Standard deviation is not known and Sample size is small.
F-test Features:
The variance of the normal populations is not known.

t-test Application:

1.Compare mean value of two groups.
2.Compare mean value of a group with a particular number.

F-test Application:

  1. comparing the variances of two or more populations.
  2. ANOVA comparing the mean value of 3 or more groups.

Happy Studying! 😉

相关文章

网友评论

    本文标题:F-test 和 t- test 小总结

    本文链接:https://www.haomeiwen.com/subject/bwnylqtx.html