美文网首页
机器学习算法集锦

机器学习算法集锦

作者: Andone1cc | 来源:发表于2017-07-15 16:57 被阅读0次

    <b>摘要</b>: 机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    机器学习

    <b>机器学习</b>(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
    <b>严格的定义</b>:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机,电子计算机,中子计算机、光子计算机或神经计算机等等。

    机器学习概论

    由上图所示:机器学习分为四大块: <b>classification (分类), clustering (聚类), regression (回归), dimensionality reduction (降维)。</b>

    <b>classification & regression</b>
    举一个简单的例子:
    给定一个样本特征 x, 我们希望预测其对应的属性值 y, 如果 y 是离散的, 那么这就是一个分类问题,反之,如果 y 是连续的实数, 这就是一个回归问题。

    如果给定一组样本特征 S={x∈RD}, 我们没有对应的 y, 而是想发掘这组样本在 D 维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。

    如果我们想用维数更低的子空间来表示原来高维的特征空间, 那么这就是降维问题。
    无论是分类还是回归,都是想建立一个预测模型 H,给定一个输入 x, 可以得到一个输出 y:
    y=H(x)
    不同的只是在分类问题中, y 是离散的; 而在回归问题中 y 是连续的。所以总得来说,两种问题的学习算法都很类似。所以在这个图谱上,我们看到在分类问题中用到的学习算法,在回归问题中也能使用。分类问题最常用的学习算法包括 SVM (支持向量机) , SGD (随机梯度下降算法), Bayes (贝叶斯估计), Ensemble, KNN 等。而回归问题也能使用 SVR, SGD, Ensemble 等算法,以及其它线性回归算法。

    <b>clustering</b>
    聚类也是分析样本的属性, 有点类似classification, 不同的就是classification 在预测之前是知道 y 的范围, 或者说知道到底有几个类别, 而聚类是不知道属性的范围的。所以 classification 也常常被称为 supervised learning, 而clustering就被称为 unsupervised learning。
    clustering 事先不知道样本的属性范围,只能凭借样本在特征空间的分布来分析样本的属性。这种问题一般更复杂。而常用的算法包括 k-means (K-均值), GMM (高斯混合模型) 等。

    <b>dimensionality reduction</b>
    降维是机器学习另一个重要的领域, 降维有很多重要的应用, 特征的维数过高, 会增加训练的负担与存储空间, 降维就是希望去除特征的冗余, 用更加少的维数来表示特征. 降维算法最基础的就是PCA了, 后面的很多算法都是以PCA为基础演化而来。

    机器学习常见算法

    详见 https://yq.aliyun.com/articles/70436?utm_content=m_14483

    相关文章

      网友评论

          本文标题:机器学习算法集锦

          本文链接:https://www.haomeiwen.com/subject/byczhxtx.html