这篇文章将持续记录kaggle示例代码中对零基础编程小白非常有意义的代码片段,领会这种思路,为形成标准化代码流程打基础。
缺失值处理
直接删除
# Get names of columns with missing values
cols_with_missing = [col for col in X_train.columns
if X_train[col].isnull().any()]
# Drop columns in training and validation data
reduced_X_train = X_train.drop(cols_with_missing, axis=1)
reduced_X_valid = X_valid.drop(cols_with_missing, axis=1)
print("MAE from Approach 1 (Drop columns with missing values):")
print(score_dataset(reduced_X_train, reduced_X_valid, y_train, y_valid))
值得注意的是Python 列表推导式(表达式 for 变量 in 列表 if 表达式 )的执行顺序,
[表达式 for 变量 in 列表 if 表达式]
1.各语句之间是嵌套关系;
2.左边第二个语句是最外层,往右为第二层,依此类推;
3.而左边第一条语句是最后一层。
参见https://blog.csdn.net/qq_23996069/article/details/97785829
归因填补(均值、中位数等)
from sklearn.impute import SimpleImputer
# Imputation
my_imputer = SimpleImputer()
imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train))
imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid))
# Imputation removed column names; put them back
imputed_X_train.columns = X_train.columns
imputed_X_valid.columns = X_valid.columns
print("MAE from Approach 2 (Imputation):")
print(score_dataset(imputed_X_train, imputed_X_valid, y_train, y_valid))
这里面的fit,transform,fit_transform, 可以简单理解为拟合数据、标准化、拟合数据并标准化,使用训练数据进行拟合标准化之后,再对测试集直接按训练集的格式进行转化即可。
等待补充详细说明
等待补充详细说明
等待补充详细说明
等待补充详细说明
等待补充详细说明
An Extension to Imputation(?没看懂)
# Make copy to avoid changing original data (when imputing)
X_train_plus = X_train.copy()
X_valid_plus = X_valid.copy()
# Make new columns indicating what will be imputed
for col in cols_with_missing:
X_train_plus[col + '_was_missing'] = X_train_plus[col].isnull()
X_valid_plus[col + '_was_missing'] = X_valid_plus[col].isnull()
# Imputation
my_imputer = SimpleImputer()
imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus))
imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus))
# Imputation removed column names; put them back
imputed_X_train_plus.columns = X_train_plus.columns
imputed_X_valid_plus.columns = X_valid_plus.columns
print("MAE from Approach 3 (An Extension to Imputation):")
print(score_dataset(imputed_X_train_plus, imputed_X_valid_plus, y_train, y_valid))
网友评论