美文网首页
ReadWriteLock之公平锁解析(一)

ReadWriteLock之公平锁解析(一)

作者: 436048bfc6a1 | 来源:发表于2021-11-22 14:23 被阅读0次

    接下来探讨ReadWriteLock的公平锁实现, 也是分如下场景分析

    情景1 三个线程都是读

    public static void main(String[] args){
        final Printer printer = new Printer();
        Thread thread1 = new Thread(){
            @Override
            public void run() {
                try {
                    printer.read("test1");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        };
        Thread thread2 = new Thread(){
            @Override
            public void run() {
                try {
                    printer.read("test2");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        };
        Thread thread3 = new Thread(){
            @Override
            public void run() {
                try {
                    printer.read("test3");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        };
        thread1.start();
        thread2.start();
        thread3.start();
    }
    
    ReadWriteLock lock = new ReentrantReadWriteLock(true);
    
    public void read(String str) throws Exception{
        lock.readLock().lock();
        try {
            System.out.println(str);
            Thread.sleep(200);
        }finally {
            lock.readLock().unlock();
        }
    }
    
    public void lock() {
        sync.acquireShared(1);
    }
    
    // AQS
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
    
    // sync
    protected final int tryAcquireShared(int unused) {
        // Thread-0
        Thread current = Thread.currentThread();
        // c = 0
        int c = getState();
        // 不走此分支
        if (exclusiveCount(c) != 0 &&
            getExclusiveOwnerThread() != current)
            return -1;
        // r = 0
        int r = sharedCount(c);
        // 
        if (!readerShouldBlock() &&
            r < MAX_COUNT &&
            compareAndSetState(c, c + SHARED_UNIT)) {
            ......
        }
        ......
    }
    
    static final class FairSync extends Sync {
        final boolean readerShouldBlock() {
            return hasQueuedPredecessors();
        }
    }
    
    // 这段代码目的就是看queue里是否还存在想要获取锁的线程
    // 此段代码解析在《ReentrantLock之公平锁unlock》这片文章中可看到
    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        // 此时h和t都是null, h == t, 所以返回false
        return h != t &&
            ((s = h.next) == null || s.thread != Thread.currentThread());
    }
    

    接下来回到tryAcquireShared方法中

    protected final int tryAcquireShared(int unused) {
        ......
        // readerShouldBlock方法返回false, 
        if (!readerShouldBlock() &&
            // r = 0, 确实比MAX_COUNT小
            r < MAX_COUNT &&
            // 成功设置state为65536
            compareAndSetState(c, c + SHARED_UNIT)) {
            // 因为r=0, 进入此分支
            if (r == 0) {
                // firstReader为thread-0
                firstReader = current;
                firstReaderHoldCount = 1;
            } else if (firstReader == current) {
                ......
            } else {
                ......
            }
            // 从此返回 
            return 1;
        }
        ......
    }
    

    此时线程1已经获取读锁, 接下来线程2开始执行

    public void lock() {
        sync.acquireShared(1);
    }
    
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
    
    protected final int tryAcquireShared(int unused) {
        // thread-1
        Thread current = Thread.currentThread();
        // state = 65536
        int c = getState();
        // 没加写锁, 跳过此分支
        if (exclusiveCount(c) != 0 &&
            getExclusiveOwnerThread() != current)
            return -1;
        // r = 1, 表示此时已经获得一次读锁
        int r = sharedCount(c);
        // readerShouldBlock方法仍旧返回false
        if (!readerShouldBlock() &&
            // MAX_COUNT为65535, 也就是获取读锁的最大次数就是65535
            // 此时为1, 并没有大于MAX_COUNT
            r < MAX_COUNT &&
            // 已经设置state为65536*2
            compareAndSetState(c, c + SHARED_UNIT)) {
            // 不走此分支
            if (r == 0) {
                 ......
            } 
            // 由于非重入锁也不走此分支
            else if (firstReader == current) {
                firstReaderHoldCount++;
            } 
            // 最终走此分支
            else {
                // rh为null
                HoldCounter rh = cachedHoldCounter;
                // 走此分支
                if (rh == null || rh.tid != getThreadId(current))
                    // 新建HoldCounter对象
                    cachedHoldCounter = rh = readHolds.get();
                else if (rh.count == 0)
                   ......
                // 并将HoldCounter对象count(对应重入次数)+1
                rh.count++;
            }
            return 1;
        }
        ......
    }
    

    到此第二个线程也获得读锁成功

    接下来第三个线程开始执行

    // ReadLock
    public void lock() {
        sync.acquireShared(1);
    }
    
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
    
    protected final int tryAcquireShared(int unused) {
        // thread-2
        Thread current = Thread.currentThread();
        // 131072 ==> 65536 * 2
        int c = getState();
        // 没有读锁, 此分支不走
        if (exclusiveCount(c) != 0 &&
            getExclusiveOwnerThread() != current)
            return -1;
        // r = 2
        int r = sharedCount(c);
        // 都是读操作, 没有阻塞
        if (!readerShouldBlock() &&
            // 读次数小于65535
            r < MAX_COUNT &&
            // state = 65536 * 3 ==> 196608
            compareAndSetState(c, c + SHARED_UNIT)) {
            if (r == 0) {
                ......
            } else if (firstReader == current) {
                ......
            }
            // 走此分支 
            else {
                // cachedHoldCounter表示上一个成功获取读锁的线程
                // 在此就是线程thread-1
                HoldCounter rh = cachedHoldCounter;
                // 由于rh.tid保存的是thread-1的线程id
                // 与当前线程保存的线程id不相等
                // 所以最终还是走此分支
                if (rh == null || rh.tid != getThreadId(current))
                    // 创建一个HoldCounter对象
                    cachedHoldCounter = rh = readHolds.get();
                else if (rh.count == 0)
                    readHolds.set(rh);
                // 将其获得锁次数加一
                rh.count++;
            }
            // 返回
            return 1;
        }
        ...
    }
    

    这时线程3也获取到读锁

    情景2 前两个线程是读, 最后一个线程是写

    由于线程1和线程2的执行流程与情景1相同, 所以不再做分析, 接下来就做线程3的分析

    public void lock() {
        sync.acquire(1);
    }
    
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    
    protected final boolean tryAcquire(int acquires) {
        // thread-2
        Thread current = Thread.currentThread();
        // c = 65536 * 2
        int c = getState();
        // w = 0
        int w = exclusiveCount(c);
        // 进入此分支
        if (c != 0) {
            // 由于w为0, 进入此分支
            if (w == 0 || current != getExclusiveOwnerThread())
                return false;
            ......
        }
        ......
    }
    

    由于之前已经有读操作获取锁, 所以写操作会被阻塞住, 接下来是执行写操作的线程如何被阻塞

    回到acquire方法

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            // 这块代码就没什么特别的
            // ReentrantLock阻塞线程也用的这个
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    

    相关文章

      网友评论

          本文标题:ReadWriteLock之公平锁解析(一)

          本文链接:https://www.haomeiwen.com/subject/cafbtrtx.html