@(Java基础)[学习笔记|]
一、谈谈你对Java体系的理解?“Java是解释执行”,这句话是正确的吗?
- write once run anywhere——一次编写、到处运行
-
虚拟机的回收机制
enter image description here
关于Java的解释执行与编译执行
首先java先经历过javac第一次编译成字节码,也就是二进制的.class文件,在运行的时候,通过jvm内嵌的解释器将字节码转换成机器码。现在常见的jvm都提供了JIT(just in time)编译器,动态编译器,具有缓存功能,会将编译过的代码放在缓存区。能够在运行时将热点代码(常见代码)编译成机器代码,这部分热点代码就属于编译执行,而不是解释执行。
二、对比Exception和Error——运行时异常与一般异常的区别
- Exception 和 Error 都是继承了 Throwable 类,在 Java 中只有 Throwable 类型的实例才可以被抛出(throw)或者捕获(catch),它是异常处理机制的基本组成类型。
- Exception 是程序正常运行中,可以预料的意外情况,可能并且应该被捕获,进行相应处理
- Error 是指在正常情况下,不大可能出现的情况,绝大部分的 Error 都会导致程序(比如 JVM 自身)处于非正常的、不可恢复状态。既然是非正常情况,所以不便于也不需要捕获,常见的比如 OutOfMemoryError 之类,都是 Error 的子类。
- Exception 又分为可检查(checked)异常和不检查(unchecked)异常,可检查异常在源代码里必须显式地进行捕获处理,这是编译期检查的一部分。不检查异常就是所谓的运行时异常,类似 NullPointerException、ArrayIndexOutOfBoundsException 之类,通常是可以编码避免的逻辑错误,具体根据需要来判断是否需要捕获,并不会在编译期强制要求。
- 常见的ERROR:NoClassDefFoundError、VirtualMachineError、OutOfMemoryError、StackOverflowError
常见的Exception:IOException(Checked Exception)
RuntimeException、NullPointerException、ClassCastException、SecurityException/ClassNotFoundException - 从性能角度来审视一下 Java 的异常处理机制,这里有两个可能会相对昂贵的地方:
try-catch 代码段会产生额外的性能开销,或者换个角度说,它往往会影响 JVM 对代码进行优化,所以建议仅捕获有必要的代码段,尽量不要一个大的 try 包住整段的代码;与此同时,利用异常控制代码流程,也不是一个好主意,远比我们通常意义上的条件语句(if/else、switch)要低效。
Java 每实例化一个 Exception,都会对当时的栈进行快照,这是一个相对比较重的操作。如果发生的非常频繁,这个开销可就不能被忽略了。
<font color=red size=2 >
注意:
(1) 一个函数尽管抛出了多个异常,但是只有一个异常可被传播到调用端。最后被抛出的异常时唯一被调用端接收的异常,其他异常都会被吞没掩盖。
(2) 不要在finally代码块中处理返回值。
(3)请勿在try代码块中调用return、break或continue语句。万一无法避免,一定要确保finally的存在不会改变函数的返回值。
</font>
三、强引用、软引用、弱引用、幻象引用有什么区别?具体使用场景是什么?
不同的引用类型,主要体现的是对象不同的可达性(reachable)状态和对垃圾收集的影响。
所谓强引用("Strong" Reference),就是我们最常见的普通对象引用,只要还有强引用指向一个对象,就能表明对象还“活着”,垃圾收集器不会碰这种对象。对于一个普通的对象,如果没有其他的引用关系,只要超过了引用的作用域或者显式地将相应(强)引用赋值为 null,就是可以被垃圾收集的了,当然具体回收时机还是要看垃圾收集策略。
软引用(SoftReference),是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当 JVM 认为内存不足时,才会去试图回收软引用指向的对象。JVM 会确保在抛出 OutOfMemoryError 之前,清理软引用指向的对象。软引用通常用来实现内存敏感的缓存,如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。
弱引用(WeakReference)并不能使对象豁免垃圾收集,仅仅是提供一种访问在弱引用状态下对象的途径。这就可以用来构建一种没有特定约束的关系,比如,维护一种非强制性的映射关系,如果试图获取时对象还在,就使用它,否则重现实例化。它同样是很多缓存实现的选择。
对于幻象引用,有时候也翻译成虚引用,你不能通过它访问对象。幻象引用仅仅是提供了一种确保对象被 finalize 以后,做某些事情的机制,比如,通常用来做所谓的 Post-Mortem 清理机制,我在专栏上一讲中介绍的 Java 平台自身 Cleaner 机制等,也有人利用幻象引用监控对象的创建和销毁。
四、理解Java的字符串,String、StringBuffer、StringBuilder有什么区别?
String 字符串常量
StringBuffer 字符串变量(线程安全)
StringBuilder 字符串变量(非线程安全)
StringBuffer
简要的说, String 类型和 StringBuffer 类型的主要性能区别其实在于 String 是不可变的对象, 因此在每次对 String 类型进行改变的时候其实都等同于生成了一个新的 String 对象,然后将指针指向新的 String 对象,所以经常改变内容的字符串最好不要用 String ,因为每次生成对象都会对系统性能产生影响,特别当内存中无引用对象多了以后, JVM 的 GC 就会开始工作,那速度是一定会相当慢的。
而如果是使用 StringBuffer 类则结果就不一样了,每次结果都会对 StringBuffer 对象本身进行操作,而不是生成新的对象,再改变对象引用。所以在一般情况下我们推荐使用 StringBuffer ,特别是字符串对象经常改变的情况下。
Java.lang.StringBuffer线程安全的可变字符序列。一个类似于 String 的字符串缓冲区,但不能修改。虽然在任意时间点上它都包含某种特定的字符序列,但通过某些方法调用可以改变该序列的长度和内容。
可将字符串缓冲区安全地用于多个线程。可以在必要时对这些方法进行同步,因此任意特定实例上的所有操作就好像是以串行顺序发生的,该顺序与所涉及的每个线程进行的方法调用顺序一致。
StringBuffer 上的主要操作是 append 和 insert 方法,可重载这些方法,以接受任意类型的数据。每个方法都能有效地将给定的数据转换成字符串,然后将该字符串的字符追加或插入到字符串缓冲区中。append 方法始终将这些字符添加到缓冲区的末端;而 insert 方法则在指定的点添加字符。
例如,如果 z 引用一个当前内容是“start”的字符串缓冲区对象,则此方法调用 z.append("le") 会使字符串缓冲区包含“startle”,而 z.insert(4, "le") 将更改字符串缓冲区,使之包含“starlet”。
StringBuilder
java.lang.StringBuilder一个可变的字符序列是5.0新增的。此类提供一个与 StringBuffer 兼容的 API,但不保证同步。该类被设计用作 StringBuffer 的一个简易替换,用在字符串缓冲区被单个线程使用的时候(这种情况很普遍)。如果可能,建议优先采用该类,因为在大多数实现中,它比 StringBuffer 要快。两者的方法基本相同。
简单说来,StringBuilder就是去掉了StringBuffer的synchronized关键字
五、谈谈Java反射机制,动态代理是基于什么原理?
六、int 和 integer 有什么区别 integer的值缓存范围?
- int与integer的基本使用对比
(1)Integer是int的包装类;int是基本数据类型;
(2)Integer变量必须实例化后才能使用;int变量不需要;
(3)Integer实际是对象的引用,指向此new的Integer对象;int是直接存储数据值 ;
(4)Integer的默认值是null;int的默认值是0。
- int与Integer的深入对比
- 新(new)对象与新(new)对象的比较(Integer == Integer)
- 对象与值的比较(Integer == int)
- 装箱对象与新对象的比较(Integer i = new Integer(100) == Integer j = 100)
- 装箱对象与装箱对象的比较(Integer源码中的缓存)
- 数据类型
原始数据类型(基本数据类型):boolean,char,byte,short,int,long,float,double
封装类类型:Boolean,Character,Byte,Short,Integer,Long,Float,Double
引用数据类型:数组,类,接口
- 基本解析
自动装箱:将基本数据类型重新转化为对象
自动拆箱:将对象重新转化为基本数据类型
对象时不能直接进行运算的,而是要转化为基本数据类型后才能进行加减乘除。
-
深入解析Integer的-128——127的常量池缓存
- 情景重现:
public class Test {
public static void main(String[] args) {
//在-128~127 之外的数
Integer num1 = 128; Integer num2 = 128;
System.out.println(num1==num2); //false
// 在-128~127 之内的数
Integer num3 = 9; Integer num4 = 9;
System.out.println(num3==num4); //true
}
}
-
Integer源码解析(给一个Integer对象赋一个int值的时候,会调用Integer类的静态方法valueOf,源码如下:)
public static Integer valueOf(String s, int radix) throws NumberFormatException {
return Integer.valueOf(parseInt(s,radix));
}public static Integer valueOf(int i) {
//断言关键字 看不懂直接忽略吧(解释的话需要一小段,好奇可百度)
assert IntegerCache.high >= 127;
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}//IntegerCache是Integer的内部类,源码如下:
/**
* 缓存支持自动装箱的对象标识语义
* -128和127(含)。
*
* 缓存在第一次使用时初始化。 缓存的大小
* 可以由-XX:AutoBoxCacheMax = <size>选项控制。
* 在VM初始化期间,java.lang.Integer.IntegerCache.high属性
* 可以设置并保存在私有系统属性中
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[];
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
}
high = h;
cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
}
private IntegerCache() {}
}
网友评论