1、创建表
建表语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
创建测试使用的数据库myhive3,使用该数据库。
1)、创建普通表
0: jdbc:hive2://localhost:10000> create database myhive3;
No rows affected (0.204 seconds)
0: jdbc:hive2://localhost:10000> use myhive3;
No rows affected (0.13 seconds)
0: jdbc:hive2://localhost:10000> create table t1(id int,name string)
0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';//指定,分割,具体的参考前面说的那篇
No rows affected (0.117 seconds)
0: jdbc:hive2://localhost:10000> show tables ;
+-----------+--+
| tab_name |
+-----------+--+
| t1 |
+-----------+--+
0: jdbc:hive2://localhost:10000> desc t1;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
+-----------+------------+----------+--+
2)、创建外部表
EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
STORED AS
SEQUENCEFILE|TEXTFILE|RCFILE
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
location当然是指定表(hdfs上)位置
0: jdbc:hive2://localhost:10000> create external table t2(id int,name string)
0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ','
0: jdbc:hive2://localhost:10000> stored as textfile
0: jdbc:hive2://localhost:10000> location '/mytable2';
No rows affected (0.133 seconds)
页面查看是否创建了该表
image直接创建在根目录下的,区别于普通表创建在/user/hive/warehouse目录下。
3)、创建分区
创建分区,分区字段fields string,查看表信息的时候会显示该表下所有分区信息的。
0: jdbc:hive2://localhost:10000> create table t3(id int,name string)
0: jdbc:hive2://localhost:10000> partitioned by(fields string)
0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
No rows affected (0.164 seconds)
0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table t3 partition (fields ='Chengdu');
INFO : Loading data to table myhive3.t3 partition (fields=Chengdu) from file:/root/sz.data
INFO : Partition myhive3.t3{fields=Chengdu} stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
No rows affected (0.738 seconds)
0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table t3 partition (fields ='Wuhan');
INFO : Loading data to table myhive3.t3 partition (fields=Wuhan) from file:/root/sz.data
INFO : Partition myhive3.t3{fields=Wuhan} stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
No rows affected (0.608 seconds)
0: jdbc:hive2://localhost:10000> select * from t3;
+--------+-----------+------------+--+
| t3.id | t3.name | t3.fields |
+--------+-----------+------------+--+
| 1 | zhangsan | Chengdu |
| 2 | lisi | Chengdu |
| 3 | wangwu | Chengdu |
| 4 | furong | Chengdu |
| 5 | fengjie | Chengdu |
| 6 | aaa | Chengdu |
| 7 | bbb | Chengdu |
| 8 | ccc | Chengdu |
| 9 | ddd | Chengdu |
| 10 | eee | Chengdu |
| 11 | fff | Chengdu |
| 12 | ggg | Chengdu |
| 1 | zhangsan | Wuhan |
| 2 | lisi | Wuhan |
| 3 | wangwu | Wuhan |
| 4 | furong | Wuhan |
| 5 | fengjie | Wuhan |
| 6 | aaa | Wuhan |
| 7 | bbb | Wuhan |
| 8 | ccc | Wuhan |
| 9 | ddd | Wuhan |
| 10 | eee | Wuhan |
| 11 | fff | Wuhan |
| 12 | ggg | Wuhan |
+--------+-----------+------------+--+
页面查看
image这两个分区目录下都存放了文件sz.data。
2、修改表
1)、增加、删除表分区
语法
增加
ALTER TABLE table_name ADD [IF NOT EXISTS] partition_spec [ LOCATION 'location1' ] partition_spec [ LOCATION 'location2' ] ...
删除
ALTER TABLE table_name DROP partition_spec, partition_spec,...
还是对上面的分区表t3
增加分区fields=’Hefei’位置还是跟其他分区一致(可以省略不写)
由于hive客户端命令行可以使用hadoop命令查看文件系统(dfs),后面就不去页面查看了
0: jdbc:hive2://localhost:10000> alter table t3 add partition (fields='Hefei');
No rows affected (0.198 seconds)
0: jdbc:hive2://localhost:10000> dfs -ls /user/hive/warehouse/myhive3.db/t3;
+---------------------------------------------------------------------------------------------------------------+--+
| DFS Output |
+---------------------------------------------------------------------------------------------------------------+--+
| Found 3 items |
| drwxr-xr-x - root supergroup 0 2017-10-19 05:17 /user/hive/warehouse/myhive3.db/t3/fields=Chengdu |
| drwxr-xr-x - root supergroup 0 2017-10-19 05:28 /user/hive/warehouse/myhive3.db/t3/fields=Hefei |
| drwxr-xr-x - root supergroup 0 2017-10-19 05:18 /user/hive/warehouse/myhive3.db/t3/fields=Wuhan |
+---------------------------------------------------------------------------------------------------------------+--+
0: jdbc:hive2://localhost:10000> alter table t3 drop partition (fields='Hefei');
INFO : Dropped the partition fields=Hefei
No rows affected (0.536 seconds)
0: jdbc:hive2://localhost:10000> dfs -ls /user/hive/warehouse/myhive3.db/t3;
+---------------------------------------------------------------------------------------------------------------+--+
| DFS Output |
+---------------------------------------------------------------------------------------------------------------+--+
| Found 2 items |
| drwxr-xr-x - root supergroup 0 2017-10-19 05:17 /user/hive/warehouse/myhive3.db/t3/fields=Chengdu |
| drwxr-xr-x - root supergroup 0 2017-10-19 05:18 /user/hive/warehouse/myhive3.db/t3/fields=Wuhan |
+---------------------------------------------------------------------------------------------------------------+--+
2)、重命名表
语法
alter table old_name rename to new_name
将t1改名为t4
0: jdbc:hive2://localhost:10000> alter table t1 rename to t4;
No rows affected (0.183 seconds)
0: jdbc:hive2://localhost:10000> show tables;
+-----------+--+
| tab_name |
+-----------+--+
| t2 |
| t3 |
| t4 |
+-----------+--+
3 rows selected (0.127 seconds)
3)、添加、更新列
语法
alter table table_name add|replace columns(col_name data_type ...)
注:ADD是代表新增一字段,字段位置在所有列后面,REPLACE则是表示替换表中所有字段。
0: jdbc:hive2://localhost:10000> desc t4;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
+-----------+------------+----------+--+
2 rows selected (0.315 seconds)
0: jdbc:hive2://localhost:10000> alter table t4 add columns (age int);
No rows affected (0.271 seconds)
0: jdbc:hive2://localhost:10000> desc t4;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| id | int | |
| name | string | |
| age | int | |
+-----------+------------+----------+--+
3 rows selected (0.199 seconds)
0: jdbc:hive2://localhost:10000> alter table t4 replace columns (no string,name string,scores int);
No rows affected (0.406 seconds)
0: jdbc:hive2://localhost:10000> desc t4;
+-----------+------------+----------+--+
| col_name | data_type | comment |
+-----------+------------+----------+--+
| no | string | |
| name | string | |
| scores | int | |
+-----------+------------+----------+--+
常用显示命令
show tables
show databases
show partitions
show functions
desc formatted table_name;//跟desc table_name一样,但是显示的内容更多
3、数据操作
1)、load导入数据
上面已经演示了将本地的文件sz.data导入到t3表中。
load也就是说将文件复制到指定的表(目录)下,指定了local的话那么会去查找本地文件系统中的文件路径。如果没指定会根据inpath指定的路径去查找。如果是hdfs的话,如下格式
hdfs://namenode:9000/user/hive/project/data1。
另外如果使用了 OVERWRITE 关键字,则目标表(或者分区)中的内容会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。
0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' overwrite into table t4 ;
INFO : Loading data to table myhive3.t4 from file:/root/sz.data
INFO : Table myhive3.t4 stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
No rows affected (0.7 seconds)
0: jdbc:hive2://localhost:10000> select * from t4;
+--------+-----------+------------+--+
| t4.no | t4.name | t4.scores |
+--------+-----------+------------+--+
| 1 | zhangsan | NULL |
| 2 | lisi | NULL |
| 3 | wangwu | NULL |
| 4 | furong | NULL |
| 5 | fengjie | NULL |
| 6 | aaa | NULL |
| 7 | bbb | NULL |
| 8 | ccc | NULL |
| 9 | ddd | NULL |
| 10 | eee | NULL |
| 11 | fff | NULL |
| 12 | ggg | NULL |
+--------+-----------+------------+--+
2)、插入语句
向表中插入语句的话
普通插入,查询其他表的表信息插入(自动数量要一致),将查询结果保存到一个目录中(目录会自动创建,由OutputFormat实现)。
insert into table t4 values('13','zhangsan',99);
0: jdbc:hive2://localhost:10000> truncate table t4;//清空表信息
0: jdbc:hive2://localhost:10000> insert into t4
0: jdbc:hive2://localhost:10000> select id,name from t3;
0: jdbc:hive2://localhost:10000> select * from t4;
+--------+-----------+--+
| t4.no | t4.name |
+--------+-----------+--+
| 1 | zhangsan |
| 2 | lisi |
| 3 | wangwu |
| 4 | furong |
| 5 | fengjie |
| 6 | aaa |
| 7 | bbb |
| 8 | ccc |
| 9 | ddd |
| 10 | eee |
| 11 | fff |
| 12 | ggg |
| 1 | zhangsan |
| 2 | lisi |
| 3 | wangwu |
| 4 | furong |
| 5 | fengjie |
| 6 | aaa |
| 7 | bbb |
| 8 | ccc |
| 9 | ddd |
| 10 | eee |
| 11 | fff |
| 12 | ggg |
+--------+-----------+--+
重新创建表t5,将表信息保存到本地目录/root/insertDir/test中
0: jdbc:hive2://localhost:10000> insert overwrite local directory '/root/insertDir/test'
0: jdbc:hive2://localhost:10000> select * from t5;
查看本地
[root@mini1 ~]# cd insertDir/test/
[root@mini1 test]# ll
总用量 4
-rw-r--r--. 1 root root 91 10月 19 06:15 000000_0
[root@mini1 test]# cat 000000_0
1zhangsan
2lisi
3wangwu
4furong
5fengjie
6aaa
7bbb
8ccc
9ddd
10eee
11fff
12ggg
4、数据查询SELECT
语法基本跟mysql一样,留意下分桶即可
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list [HAVING condition]]
[CLUSTER BY col_list
| [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list]
]
[LIMIT number]
在前面做了很多测试,就不想再重复了,会mysql的查询这个肯定也会。
需要注意的是order by和sort by的区别:
1、order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
2、sort by不是全局排序,其在数据进入reducer前完成排序。因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序。
主要介绍下join
5、Join查询
join查询其实跟mysql还是一样的
准备数据
a.txt中
1,a
2,b
3,c
4,d
7,y
8,u
b.txt中
2,bb
3,cc
7,yy
9,pp
创建表a和b,将a.txt导入到a表中,b.txt导入到b表中
1)、内连接
0: jdbc:hive2://localhost:10000> create table a(id int,name string)
0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
No rows affected (0.19 seconds)
0: jdbc:hive2://localhost:10000> create table b(id int,name string)
0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
No rows affected (0.071 seconds)
0: jdbc:hive2://localhost:10000> load data local inpath '/root/a.txt' into table a;
0: jdbc:hive2://localhost:10000> load data local inpath '/root/b.txt' into table b;
0: jdbc:hive2://localhost:10000> select * from a;
+-------+---------+--+
| a.id | a.name |
+-------+---------+--+
| 1 | a |
| 2 | b |
| 3 | c |
| 4 | d |
| 7 | y |
| 8 | u |
+-------+---------+--+
6 rows selected (0.218 seconds)
0: jdbc:hive2://localhost:10000> select * from b;
+-------+---------+--+
| b.id | b.name |
+-------+---------+--+
| 2 | bb |
| 3 | cc |
| 7 | yy |
| 9 | pp |
+-------+---------+--+
4 rows selected (0.221 seconds)
0: jdbc:hive2://localhost:10000> select * from a inner join b on a.id = b.id;
...
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 7 | y | 7 | yy |
+-------+---------+-------+---------+--+
根据id进行连接,能连接到的则串起来。
2)、左外连接(outer可省)
0: jdbc:hive2://localhost:10000> select * from a left outer join b on a.id = b.id;
...
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 1 | a | NULL | NULL |
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 4 | d | NULL | NULL |
| 7 | y | 7 | yy |
| 8 | u | NULL | NULL |
+-------+---------+-------+---------+--+
6 rows selected (16.453 seconds)
左边的表内容全列出来,右边的能连上的就显示,不能的则显示null。
右外连接则相反。
3)、全连接full outer
0: jdbc:hive2://localhost:10000> select * from a full outer join b on a.id = b.id;
...
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 1 | a | NULL | NULL |
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 4 | d | NULL | NULL |
| 7 | y | 7 | yy |
| 8 | u | NULL | NULL |
| NULL | NULL | 9 | pp |
+-------+---------+-------+---------+--+
相当于左连接+右连接
4)、semi join
0: jdbc:hive2://localhost:10000> select * from a left semi join b on a.id = b.id;
+-------+---------+--+
| a.id | a.name |
+-------+---------+--+
| 2 | b |
| 3 | c |
| 7 | y |
+-------+---------+--+
3 rows selected (17.511 seconds)
相当于左外连接得到的信息的左半部分。
注:可以理解为exist in(…),但是hive中没有该语法,所以使用LEFT SEMI JOIN代替IN/EXISTS的,前者为后者高效实现。
比如下面的例子
重写以下子查询为LEFT SEMI JOIN
SELECT a.key, a.value
FROM a
WHERE a.key exist in
(SELECT b.key
FROM B);
可以被重写为:
SELECT a.key, a.val
FROM a LEFT SEMI JOIN b on (a.key = b.key)
网友评论