美文网首页
Hive中sql的使用

Hive中sql的使用

作者: 小猪Harry | 来源:发表于2018-10-07 21:42 被阅读0次

    1、创建表
    建表语法

    CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
       [(col_name data_type [COMMENT col_comment], ...)] 
       [COMMENT table_comment] 
       [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
       [CLUSTERED BY (col_name, col_name, ...) 
       [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
       [ROW FORMAT row_format] 
       [STORED AS file_format] 
       [LOCATION hdfs_path]
    
    

    创建测试使用的数据库myhive3,使用该数据库。
    1)、创建普通表

    0: jdbc:hive2://localhost:10000> create database myhive3;
    No rows affected (0.204 seconds)
    0: jdbc:hive2://localhost:10000> use myhive3;
    No rows affected (0.13 seconds)
    0: jdbc:hive2://localhost:10000> create table t1(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';//指定,分割,具体的参考前面说的那篇
    No rows affected (0.117 seconds)
    0: jdbc:hive2://localhost:10000> show tables ;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    | t1        |
    +-----------+--+
    0: jdbc:hive2://localhost:10000> desc t1;
    +-----------+------------+----------+--+
    | col_name  | data_type  | comment  |
    +-----------+------------+----------+--+
    | id        | int        |          |
    | name      | string     |          |
    +-----------+------------+----------+--+
    
    

    2)、创建外部表
    EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
    STORED AS
    SEQUENCEFILE|TEXTFILE|RCFILE
    如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
    location当然是指定表(hdfs上)位置

    0: jdbc:hive2://localhost:10000> create external table t2(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ','
    0: jdbc:hive2://localhost:10000> stored as textfile
    0: jdbc:hive2://localhost:10000> location '/mytable2';
    No rows affected (0.133 seconds)
    
    

    页面查看是否创建了该表

    image.png

    直接创建在根目录下的,区别于普通表创建在/user/hive/warehouse目录下。
    3)、创建分区
    创建分区,分区字段fields string,查看表信息的时候会显示该表下所有分区信息的。

    0: jdbc:hive2://localhost:10000> create table t3(id int,name string)
    0: jdbc:hive2://localhost:10000> partitioned by(fields string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
    No rows affected (0.164 seconds)
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table t3 partition (fields ='Chengdu');
    INFO  : Loading data to table myhive3.t3 partition (fields=Chengdu) from file:/root/sz.data
    INFO  : Partition myhive3.t3{fields=Chengdu} stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
    No rows affected (0.738 seconds)
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' into table t3 partition (fields ='Wuhan');
    INFO  : Loading data to table myhive3.t3 partition (fields=Wuhan) from file:/root/sz.data
    INFO  : Partition myhive3.t3{fields=Wuhan} stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
    No rows affected (0.608 seconds)
    0: jdbc:hive2://localhost:10000> select * from t3;
    +--------+-----------+------------+--+
    | t3.id  |  t3.name  | t3.fields  |
    +--------+-----------+------------+--+
    | 1      | zhangsan  | Chengdu    |
    | 2      | lisi      | Chengdu    |
    | 3      | wangwu    | Chengdu    |
    | 4      | furong    | Chengdu    |
    | 5      | fengjie   | Chengdu    |
    | 6      | aaa       | Chengdu    |
    | 7      | bbb       | Chengdu    |
    | 8      | ccc       | Chengdu    |
    | 9      | ddd       | Chengdu    |
    | 10     | eee       | Chengdu    |
    | 11     | fff       | Chengdu    |
    | 12     | ggg       | Chengdu    |
    | 1      | zhangsan  | Wuhan      |
    | 2      | lisi      | Wuhan      |
    | 3      | wangwu    | Wuhan      |
    | 4      | furong    | Wuhan      |
    | 5      | fengjie   | Wuhan      |
    | 6      | aaa       | Wuhan      |
    | 7      | bbb       | Wuhan      |
    | 8      | ccc       | Wuhan      |
    | 9      | ddd       | Wuhan      |
    | 10     | eee       | Wuhan      |
    | 11     | fff       | Wuhan      |
    | 12     | ggg       | Wuhan      |
    +--------+-----------+------------+--+
    
    

    页面查看

    image.png

    这两个分区目录下都存放了文件sz.data。

    2、修改表
    1)、增加、删除表分区
    语法

    增加
    ALTER TABLE table_name ADD [IF NOT EXISTS] partition_spec [ LOCATION 'location1' ] partition_spec [ LOCATION 'location2' ] ...
    删除
    ALTER TABLE table_name DROP partition_spec, partition_spec,...
    
    

    还是对上面的分区表t3
    增加分区fields=’Hefei’位置还是跟其他分区一致(可以省略不写)
    由于hive客户端命令行可以使用hadoop命令查看文件系统(dfs),后面就不去页面查看了

    0: jdbc:hive2://localhost:10000> alter table t3 add partition (fields='Hefei');
    No rows affected (0.198 seconds)
    0: jdbc:hive2://localhost:10000> dfs -ls /user/hive/warehouse/myhive3.db/t3;
    +---------------------------------------------------------------------------------------------------------------+--+
    |                                                  DFS Output                                                   |
    +---------------------------------------------------------------------------------------------------------------+--+
    | Found 3 items                                                                                                 |
    | drwxr-xr-x   - root supergroup          0 2017-10-19 05:17 /user/hive/warehouse/myhive3.db/t3/fields=Chengdu  |
    | drwxr-xr-x   - root supergroup          0 2017-10-19 05:28 /user/hive/warehouse/myhive3.db/t3/fields=Hefei    |
    | drwxr-xr-x   - root supergroup          0 2017-10-19 05:18 /user/hive/warehouse/myhive3.db/t3/fields=Wuhan    |
    +---------------------------------------------------------------------------------------------------------------+--+
    0: jdbc:hive2://localhost:10000> alter table t3 drop partition (fields='Hefei');
    INFO  : Dropped the partition fields=Hefei
    No rows affected (0.536 seconds)
    0: jdbc:hive2://localhost:10000> dfs -ls /user/hive/warehouse/myhive3.db/t3;
    +---------------------------------------------------------------------------------------------------------------+--+
    |                                                  DFS Output                                                   |
    +---------------------------------------------------------------------------------------------------------------+--+
    | Found 2 items                                                                                                 |
    | drwxr-xr-x   - root supergroup          0 2017-10-19 05:17 /user/hive/warehouse/myhive3.db/t3/fields=Chengdu  |
    | drwxr-xr-x   - root supergroup          0 2017-10-19 05:18 /user/hive/warehouse/myhive3.db/t3/fields=Wuhan    |
    +---------------------------------------------------------------------------------------------------------------+--+
    
    

    2)、重命名表
    语法

    alter table old_name rename to new_name
    
    

    将t1改名为t4

    0: jdbc:hive2://localhost:10000> alter table t1 rename to t4;
    No rows affected (0.183 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name  |
    +-----------+--+
    | t2        |
    | t3        |
    | t4        |
    +-----------+--+
    3 rows selected (0.127 seconds)
    
    

    3)、添加、更新列
    语法

    alter table table_name add|replace columns(col_name data_type  ...) 
    
    

    注:ADD是代表新增一字段,字段位置在所有列后面,REPLACE则是表示替换表中所有字段。

    0: jdbc:hive2://localhost:10000> desc t4;
    +-----------+------------+----------+--+
    | col_name  | data_type  | comment  |
    +-----------+------------+----------+--+
    | id        | int        |          |
    | name      | string     |          |
    +-----------+------------+----------+--+
    2 rows selected (0.315 seconds)
    0: jdbc:hive2://localhost:10000> alter table t4 add columns (age int);
    No rows affected (0.271 seconds)
    0: jdbc:hive2://localhost:10000> desc t4;
    +-----------+------------+----------+--+
    | col_name  | data_type  | comment  |
    +-----------+------------+----------+--+
    | id        | int        |          |
    | name      | string     |          |
    | age       | int        |          |
    +-----------+------------+----------+--+
    3 rows selected (0.199 seconds)
    0: jdbc:hive2://localhost:10000> alter table t4 replace columns (no string,name string,scores int);
    No rows affected (0.406 seconds)
    0: jdbc:hive2://localhost:10000> desc t4;
    +-----------+------------+----------+--+
    | col_name  | data_type  | comment  |
    +-----------+------------+----------+--+
    | no        | string     |          |
    | name      | string     |          |
    | scores    | int        |          |
    +-----------+------------+----------+--+
    
    

    常用显示命令

    show tables
    show databases
    show partitions
    show functions
    desc formatted table_name;//跟desc table_name一样,但是显示的内容更多
    
    

    3、数据操作
    1)、load导入数据
    上面已经演示了将本地的文件sz.data导入到t3表中。
    load也就是说将文件复制到指定的表(目录)下,指定了local的话那么会去查找本地文件系统中的文件路径。如果没指定会根据inpath指定的路径去查找。如果是hdfs的话,如下格式
    hdfs://namenode:9000/user/hive/project/data1
    另外如果使用了 OVERWRITE 关键字,则目标表(或者分区)中的内容会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
    如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。

    0: jdbc:hive2://localhost:10000> load data local inpath '/root/sz.data' overwrite into table t4 ;
    INFO  : Loading data to table myhive3.t4 from file:/root/sz.data
    INFO  : Table myhive3.t4 stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
    No rows affected (0.7 seconds)
    0: jdbc:hive2://localhost:10000> select * from t4;
    +--------+-----------+------------+--+
    | t4.no  |  t4.name  | t4.scores  |
    +--------+-----------+------------+--+
    | 1      | zhangsan  | NULL       |
    | 2      | lisi      | NULL       |
    | 3      | wangwu    | NULL       |
    | 4      | furong    | NULL       |
    | 5      | fengjie   | NULL       |
    | 6      | aaa       | NULL       |
    | 7      | bbb       | NULL       |
    | 8      | ccc       | NULL       |
    | 9      | ddd       | NULL       |
    | 10     | eee       | NULL       |
    | 11     | fff       | NULL       |
    | 12     | ggg       | NULL       |
    +--------+-----------+------------+--+
    
    

    2)、插入语句
    向表中插入语句的话
    普通插入,查询其他表的表信息插入(自动数量要一致),将查询结果保存到一个目录中(目录会自动创建,由OutputFormat实现)。

     insert into table t4 values('13','zhangsan',99);
    
    
    0: jdbc:hive2://localhost:10000> truncate table t4;//清空表信息
    0: jdbc:hive2://localhost:10000> insert into t4 
    0: jdbc:hive2://localhost:10000> select id,name from t3;
    0: jdbc:hive2://localhost:10000> select * from t4;
    +--------+-----------+--+
    | t4.no  |  t4.name  |
    +--------+-----------+--+
    | 1      | zhangsan  |
    | 2      | lisi      |
    | 3      | wangwu    |
    | 4      | furong    |
    | 5      | fengjie   |
    | 6      | aaa       |
    | 7      | bbb       |
    | 8      | ccc       |
    | 9      | ddd       |
    | 10     | eee       |
    | 11     | fff       |
    | 12     | ggg       |
    | 1      | zhangsan  |
    | 2      | lisi      |
    | 3      | wangwu    |
    | 4      | furong    |
    | 5      | fengjie   |
    | 6      | aaa       |
    | 7      | bbb       |
    | 8      | ccc       |
    | 9      | ddd       |
    | 10     | eee       |
    | 11     | fff       |
    | 12     | ggg       |
    +--------+-----------+--+
    
    

    重新创建表t5,将表信息保存到本地目录/root/insertDir/test中

    0: jdbc:hive2://localhost:10000> insert overwrite local directory '/root/insertDir/test'
    0: jdbc:hive2://localhost:10000> select * from t5;
    查看本地
    [root@mini1 ~]# cd insertDir/test/
    [root@mini1 test]# ll
    总用量 4
    -rw-r--r--. 1 root root 91 10月 19 06:15 000000_0
    [root@mini1 test]# cat 000000_0 
    1zhangsan
    2lisi
    3wangwu
    4furong
    5fengjie
    6aaa
    7bbb
    8ccc
    9ddd
    10eee
    11fff
    12ggg
    
    

    4、数据查询SELECT
    语法基本跟mysql一样,留意下分桶即可

    SELECT [ALL | DISTINCT] select_expr, select_expr, ... 
    FROM table_reference
    [WHERE where_condition] 
    [GROUP BY col_list [HAVING condition]] 
    [CLUSTER BY col_list 
      | [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list] 
    ] 
    [LIMIT number]
    
    

    在前面做了很多测试,就不想再重复了,会mysql的查询这个肯定也会。
    需要注意的是order by和sort by的区别:
    1、order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
    2、sort by不是全局排序,其在数据进入reducer前完成排序。因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序。

    主要介绍下join
    5、Join查询
    join查询其实跟mysql还是一样的
    准备数据
    a.txt中
    1,a
    2,b
    3,c
    4,d
    7,y
    8,u
    b.txt中
    2,bb
    3,cc
    7,yy
    9,pp
    创建表a和b,将a.txt导入到a表中,b.txt导入到b表中
    1)、内连接

    0: jdbc:hive2://localhost:10000> create table a(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
    No rows affected (0.19 seconds)
    0: jdbc:hive2://localhost:10000> create table b(id int,name string)
    0: jdbc:hive2://localhost:10000> row format delimited fields terminated by ',';
    No rows affected (0.071 seconds)
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/a.txt' into table a;
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/b.txt' into table b;
    
    0: jdbc:hive2://localhost:10000> select * from a;
    +-------+---------+--+
    | a.id  | a.name  |
    +-------+---------+--+
    | 1     | a       |
    | 2     | b       |
    | 3     | c       |
    | 4     | d       |
    | 7     | y       |
    | 8     | u       |
    +-------+---------+--+
    6 rows selected (0.218 seconds)
    0: jdbc:hive2://localhost:10000> select * from b;
    +-------+---------+--+
    | b.id  | b.name  |
    +-------+---------+--+
    | 2     | bb      |
    | 3     | cc      |
    | 7     | yy      |
    | 9     | pp      |
    +-------+---------+--+
    4 rows selected (0.221 seconds)
    
    0: jdbc:hive2://localhost:10000> select * from a inner join b on a.id = b.id;
    ...
    +-------+---------+-------+---------+--+
    | a.id  | a.name  | b.id  | b.name  |
    +-------+---------+-------+---------+--+
    | 2     | b       | 2     | bb      |
    | 3     | c       | 3     | cc      |
    | 7     | y       | 7     | yy      |
    +-------+---------+-------+---------+--+
    
    

    根据id进行连接,能连接到的则串起来。
    2)、左外连接(outer可省)

    0: jdbc:hive2://localhost:10000> select * from a left outer join b on a.id = b.id;
    ...
    +-------+---------+-------+---------+--+
    | a.id  | a.name  | b.id  | b.name  |
    +-------+---------+-------+---------+--+
    | 1     | a       | NULL  | NULL    |
    | 2     | b       | 2     | bb      |
    | 3     | c       | 3     | cc      |
    | 4     | d       | NULL  | NULL    |
    | 7     | y       | 7     | yy      |
    | 8     | u       | NULL  | NULL    |
    +-------+---------+-------+---------+--+
    6 rows selected (16.453 seconds)
    
    

    左边的表内容全列出来,右边的能连上的就显示,不能的则显示null。
    右外连接则相反。
    3)、全连接full outer

    0: jdbc:hive2://localhost:10000> select * from a full outer join b on a.id = b.id;
    ...
    +-------+---------+-------+---------+--+
    | a.id  | a.name  | b.id  | b.name  |
    +-------+---------+-------+---------+--+
    | 1     | a       | NULL  | NULL    |
    | 2     | b       | 2     | bb      |
    | 3     | c       | 3     | cc      |
    | 4     | d       | NULL  | NULL    |
    | 7     | y       | 7     | yy      |
    | 8     | u       | NULL  | NULL    |
    | NULL  | NULL    | 9     | pp      |
    +-------+---------+-------+---------+--+
    
    

    相当于左连接+右连接
    4)、semi join

    0: jdbc:hive2://localhost:10000> select * from a left semi  join b on a.id = b.id;
    
    +-------+---------+--+
    | a.id  | a.name  |
    +-------+---------+--+
    | 2     | b       |
    | 3     | c       |
    | 7     | y       |
    +-------+---------+--+
    3 rows selected (17.511 seconds)
    
    

    相当于左外连接得到的信息的左半部分。
    注:可以理解为exist in(…),但是hive中没有该语法,所以使用LEFT SEMI JOIN代替IN/EXISTS的,前者为后者高效实现。
    比如下面的例子

    重写以下子查询为LEFT SEMI JOIN
      SELECT a.key, a.value
      FROM a
      WHERE a.key exist in
       (SELECT b.key
        FROM B);
    可以被重写为:
       SELECT a.key, a.val
       FROM a LEFT SEMI JOIN b on (a.key = b.key)
    

    相关文章

      网友评论

          本文标题:Hive中sql的使用

          本文链接:https://www.haomeiwen.com/subject/lfyraftx.html