美文网首页
机器学习--SVM算法实现

机器学习--SVM算法实现

作者: YCzhao | 来源:发表于2018-11-29 15:53 被阅读0次

一. 使用sklearn中的数据集做案例

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
# 使用seaborn绘制默认值
import seaborn as sns; sns.set()

#随机来点数据
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2,
                  random_state=0, cluster_std=0.60)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

随便的画几条分割线,看看哪个好?

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
    plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

再进一步观察决策边界的面积, 画出阴影

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
    yfit = m * xfit + b
    plt.plot(xfit, yfit, '-k')
    plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',
                     color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);

二. 训练SVM

from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel='linear')
model.fit(X, y)
#绘图函数
def plot_svc_decision_function(model, ax=None, plot_support=True):
    """绘制二维SVC的决策函数"""
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    
    # 创建网格来评估模型
    x = np.linspace(xlim[0], xlim[1], 30)
    y = np.linspace(ylim[0], ylim[1], 30)
    Y, X = np.meshgrid(y, x)
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    P = model.decision_function(xy).reshape(X.shape)
    
    # 绘制决策边界和小区域
    ax.contour(X, Y, P, colors='k',
               levels=[-1, 0, 1], alpha=0.5,
               linestyles=['--', '-', '--'])
    
    # 绘制支持向量
    if plot_support:
        ax.scatter(model.support_vectors_[:, 0],
                   model.support_vectors_[:, 1],
                   s=300, linewidth=1, facecolors='none');
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model)
  • 这条线就是我们希望得到的决策边界啦

  • 观察发现有3个点做了特殊的标记,它们恰好都是边界上的点

  • 它们就是我们的support vectors(支持向量)

  • 在Scikit-Learn中, 它们存储在这个位置 support_vectors_(一个属性)

model.support_vectors_
  • 观察可以发现,只需要支持向量我们就可以把模型构建出来

三. 接下来我们尝试一下,用不同多的数据点,看看效果会不会发生变化,分别使用60个和120个数据点

def plot_svm(N=10, ax=None):
    X, y = make_blobs(n_samples=200, centers=2,
                      random_state=0, cluster_std=0.60)
    X = X[:N]
    y = y[:N]
    model = SVC(kernel='linear', C=1E10)
    model.fit(X, y)
    
    ax = ax or plt.gca()
    ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    ax.set_xlim(-1, 4)
    ax.set_ylim(-1, 6)
    plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):
    plot_svm(N, axi)
    axi.set_title('N = {0}'.format(N))

观察发现,只要支持向量没变,其他的数据怎么加无所谓!

四. 引入核函数的SVM

首先我们先用线性的核来看一下在下面这样比较难的数据集上还能分了吗?

from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False)

显然不行, 那接下来试试高维的核变换
我们可以先用一个三维图来表示这个额外的数据维度:
#加入了新的维度r
from mpl_toolkits import mplot3d
r = np.exp(-(X ** 2).sum(1))
def plot_3D(elev=30, azim=30, X=X, y=y):
    ax = plt.subplot(projection='3d')
    ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
    ax.view_init(elev=elev, azim=azim)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('r')

plot_3D(elev=45, azim=45, X=X, y=y)
#加入径向基函数
clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)
#再看结果
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
            s=300, lw=1, facecolors='none');

使用这种核支持向量机,我们学习一个合适的非线性决策边界。这种核变换策略在机器学习中经常被使用!

五. 调节SVM参数: Soft Margin问题

调节C参数

  • 当C趋近于无穷大时:意味着分类严格不能有错误
  • 当C趋近于很小的时:意味着可以有更大的错误容忍
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, C in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='linear', C=C).fit(X, y)
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('C = {0:.1f}'.format(C), size=14)
调节C参数对比
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=1.1)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, gamma in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='rbf', gamma=gamma).fit(X, y)
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('gamma = {0:.1f}'.format(gamma), size=14)
调节gamma参数对比

相关文章

  • 机器学习--SVM算法实现

    一. 使用sklearn中的数据集做案例 随便的画几条分割线,看看哪个好? 再进一步观察决策边界的面积, 画出阴影...

  • 廖君机器学习&深度学习资料2

    廖君机器学习资料 《机器学习经典算法详解及Python实现--基于SMO的SVM分类器》 介绍:此外作者还有一篇元...

  • 机器学习算法实现(三):SVM

    SVM算法的R语言实践 数据集,采用R语言内置的iris数据集。 查看数据集前六个观测 head(iris) 第一...

  • Machine Learning: 十大机器学习算法

    机器学习算法分类:监督学习、无监督学习、强化学习 基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(K...

  • Machine Learning: 十大机器学习算法

    机器学习算法分类:监督学习、无监督学习、强化学习 基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(K...

  • 常用机器学习算法

    常用机器学习算法 常用预测(分类,回归)模型: 分类算法:LR , SVM,KNN 矩阵分解:FunkSVD,Bi...

  • 支持向量机/SVM(Support Vector Machine

    SVM,曾经是最为流行的机器学习算法,可以用于分类问题、回归问题及异常点检测问题。不仅如此,SVM的算法动机可以通...

  • SVM 随笔

    前言 当下机器学习比较重要 3 中算法,个人都目前为止认为比较重要机器学习算法分别是,深度学习、SVM 和决策树。...

  • 机器学习算法

    机器学习的算法分监督算法和无监督 算法。监督算法包括回归算法,神经网络,SVM;无监督算法包括聚类算法,降维算法。...

  • 《机器学习实战》中SVM算法实现的错误

    最近又看了一遍SVM算法, 理论主要参考了李航老师的《统计学习方法》, 代码实现上参考了《机器学习实战》和smo算...

网友评论

      本文标题:机器学习--SVM算法实现

      本文链接:https://www.haomeiwen.com/subject/cekfcqtx.html