美文网首页LeetCode笔记
LeetCode笔记:396. Rotate Function

LeetCode笔记:396. Rotate Function

作者: Cloudox_ | 来源:发表于2017-11-22 16:27 被阅读20次

    问题:

    Given an array of integers A and let n to be its length.
    Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
    F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
    Calculate the maximum value of F(0), F(1), ..., F(n-1).
    Note:
    n is guaranteed to be less than 105.
    Example:

    A = [4, 3, 2, 6]
    F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
    F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
    F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
    F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
    So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

    大意:

    给出一个整型数组A,设n为其长度。
    假设Bk是将A进行k此顺时针旋转后的数组,我们定义一个A的“旋转函数”F,如下:
    F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
    注意:
    n保证不会超过10的5次方
    例子:

    A = [4, 3, 2, 6]
    F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
    F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
    F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
    F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
    所以 F(0), F(1), F(2), F(3) 中最大的值为 F(3) = 26.

    思路:

    这个题目的意思就是对A进行旋转求多项式,每次旋转系数移动一次,旋转一次求出一个结果,看哪个最大就返回哪个。

    我的做法是直接进行每一个的计算然后找最大的,代码挺简单,时间复杂度是O(n平方),很长。

    代码(Java):

    public class Solution {
        public int maxRotateFunction(int[] A) {
            if (A.length == 0) return 0;
            int result = -2147483648;
            for (int i = 0; i < A.length; i++) {
                int sum = sum(A, A.length - i);
                if (sum > result) result = sum;
            }
            return result;
        }
        
        public int sum(int[] A, int index) {
            int sum = 0;
            for (int i = 0; i < A.length; i++) {
                if (index >= A.length) index = 0;
                sum += i * A[index];
                index ++;
            }
            return sum;
        }
    }
    

    他山之石:

    public class Solution {
        public int maxRotateFunction(int[] A) {
            int allSum = 0;
            int len = A.length;
            int F = 0;
            for (int i = 0; i < len; i++) {
                F += i * A[i];
                allSum += A[i];
            }
            int max = F;
            for (int i = len - 1; i >= 1; i--) {
                F = F + allSum - len * A[i];
                max = Math.max(F, max);
            }
            return max; 
        }
    }
    

    这个做法的好处在于只需要O(n)的时间,快很多。他对题目的要求进行了一些数学计算,然后得出了一个方便计算的式子,过程如下:

    F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
    F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
       = 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]

    那么,

    F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
          = (Bk[0] + ... + Bk[n-1]) - nBk[0]
          = sum - nBk[0]

    因此,

    F(k) = F(k-1) + sum - nBk[0]

    那Bk[0]是什么呢?

    k = 0; B[0] = A[0];
    k = 1; B[0] = A[len-1];
    k = 2; B[0] = A[len-2];
    ...

    这样,也就有了上面的代码了。

    合集:https://github.com/Cloudox/LeetCode-Record


    查看作者首页

    相关文章

      网友评论

        本文标题:LeetCode笔记:396. Rotate Function

        本文链接:https://www.haomeiwen.com/subject/cjhovxtx.html