美文网首页
JDK源码 -- ConcurrentHashMap

JDK源码 -- ConcurrentHashMap

作者: TomyZhang | 来源:发表于2019-08-15 10:19 被阅读0次

    一、概念

    类定义:

    public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
        implements ConcurrentMap<K,V>, Serializable
    
    • 继承了AbstractMap抽象类,实现了Map接口,拥有一组Map通用的操作。
    • 实现了ConcurrentMap接口,拥有一组ConcurrentMap通用的操作。
    • 实现了Serializable接口,可进行序列化。

    特点:

    • 不允许键及值为空对象。
    • 线程安全类。
    • 不保证插入顺序,也不保证顺序不随时间变化。

    二、使用

    //TestConcurrentHashMap
    public class TestConcurrentHashMap {
        private static final String TAG = "TestConcurrentHashMap";
        private ConcurrentHashMap<String ,String> map = new ConcurrentHashMap<>();
    
        public void testPut() {
            //map.put(null, "XXX"); //NullPointerException
            //map.put("YYY", null); //NullPointerException
            map.put("AAA", "111");
            map.put("AAA", "11111");
            map.putIfAbsent("BBB", "222");
            map.putIfAbsent("BBB", "22222");
            map.put("CCC", "333");
            map.put("DDD", "444");
            Log.d(TAG, "zwm, put map: " + map);
        }
    
        public void testRemove() {
            map.remove("AAA");
            map.remove("BBB", "22222");
            map.remove("CCC", "333");
            Log.d(TAG, "zwm, remove map: " + map);
        }
    
        public void testReplace() {
            map.replace("BBB", "22222");
            map.replace("DDD", "444", "44444");
            Log.d(TAG, "zwm, replace map: " + map);
        }
    
        public void testGet() {
            Log.d(TAG, "zwm, get DDD: " + map.get("DDD"));
        }
    }
    
    //测试代码
    private void testMethod() {
        Log.d(TAG, "zwm, testMethod");
        TestConcurrentHashMap testConcurrentHashMap = new TestConcurrentHashMap();
        testConcurrentHashMap.testPut();
        testConcurrentHashMap.testRemove();
        testConcurrentHashMap.testReplace();
        testConcurrentHashMap.testGet();
    }
    
    //输出log
    2019-08-16 09:57:24.121 zwm, testMethod
    2019-08-16 09:57:24.122 zwm, put map: {AAA=11111, CCC=333, BBB=222, DDD=444}
    2019-08-16 09:57:24.123 zwm, remove map: {BBB=222, DDD=444}
    2019-08-16 09:57:24.123 zwm, replace map: {BBB=22222, DDD=44444}
    2019-08-16 09:57:24.123 zwm, get DDD: 44444
    

    三、原理

    重要参数

    //哈希数组的最大容量
    private static final int MAXIMUM_CAPACITY = 1 << 30;
    //哈希数组的默认容量,必须为2的幂数
    private static final int DEFAULT_CAPACITY = 16;
    //数组可能的最大值
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    //并发级别,遗留下来的,为兼容以前的版本
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    //负载因子
    private static final float LOAD_FACTOR = 0.75f;
    //链表转红黑树阈值
    static final int TREEIFY_THRESHOLD = 8;
    //红黑树转链表阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    //链表转红黑树的哈希数组的最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;
    //每次进行转移的最小值
    private static final int MIN_TRANSFER_STRIDE = 16;
    //生成sizeCtl所使用的bit位数
    private static int RESIZE_STAMP_BITS = 16;
    //进行扩容所允许的最大线程数
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    //记录sizeCtl中的大小所需要进行的偏移位数
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    static final int MOVED     = -1; // hash for forwarding nodes
    static final int TREEBIN   = -2; // hash for roots of trees
    static final int RESERVED  = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
    //可用处理器数量
    static final int NCPU = Runtime.getRuntime().availableProcessors();
    /** For serialization compatibility. */
    private static final ObjectStreamField[] serialPersistentFields = {
        new ObjectStreamField("segments", Segment[].class),
        new ObjectStreamField("segmentMask", Integer.TYPE),
        new ObjectStreamField("segmentShift", Integer.TYPE)
    };
    
    //存放Node的数组
    transient volatile Node<K,V>[] table;
    
    /*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义
     *当为负数时:-1代表正在初始化,-N代表有N-1个线程正在进行扩容
     *当为0时:代表当时的table还没有被初始化
     *当为正数时:表示初始化或者下一次进行扩容的大小
     */
    private transient volatile int sizeCtl;
    

    数据结构

    //哈希数组结点
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
        volatile V val;
        volatile Node<K,V> next;
    
        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }
    
        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }
    
        public final boolean equals(Object o) {
            Object k, v, u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == (u = val) || v.equals(u)));
        }
    
        /**
         * Virtualized support for map.get(); overridden in subclasses.
         */
        Node<K,V> find(int h, Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &&
                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }
    
    //红黑树结点
    static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
    
        TreeNode(int hash, K key, V val, Node<K,V> next,
                 TreeNode<K,V> parent) {
            super(hash, key, val, next);
            this.parent = parent;
        }
    
        Node<K,V> find(int h, Object k) {
            return findTreeNode(h, k, null);
        }
    
        /**
         * Returns the TreeNode (or null if not found) for the given key
         * starting at given root.
         */
        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
            if (k != null) {
                TreeNode<K,V> p = this;
                do  {
                    int ph, dir; K pk; TreeNode<K,V> q;
                    TreeNode<K,V> pl = p.left, pr = p.right;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                              (kc = comparableClassFor(k)) != null) &&
                             (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
            }
            return null;
        }
    }
    
    //封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制
    static final class TreeBin<K,V> extends Node<K,V> {
        //指向TreeNode列表和根节点
        TreeNode<K,V> root;
        volatile TreeNode<K,V> first;
        volatile Thread waiter;
        volatile int lockState;
        //读写锁状态
        static final int WRITER = 1; // 获取写锁的状态
        static final int WAITER = 2; // 等待写锁的状态
        static final int READER = 4; // 增加数据时读锁的状态
    
        ...
    }
    

    构造函数

    //无参构造函数
    public ConcurrentHashMap() {
    }
    
    //指定初始容量的构造函数,只是计算容量值,并没有分配内存
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }
    
    //指定Map参数的构造函数,会执行插入操作
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }
    
    //指定初始容量及负载因子的构造函数
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }
    
    //指定初始容量、负载因子及并发级别
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }
    
    //计算容量值
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    

    public V put(K key, V value)

    //插入或更新一个键值对
    public V put(K key, V value) {
        return putVal(key, value, false);
    }
    
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode()); //计算哈希值
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0) //如果哈希数组未进行初始化则进行初始化
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //如果哈希索引位置没有元素,则直接插入
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null))) //使用CAS操作
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED) //如果在进行扩容,则先进行扩容操作
                tab = helpTransfer(tab, f);
            else {
                //如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点
                V oldVal = null;
                synchronized (f) { //使用synchronized加锁
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) { //如果该结点是链表结点类型
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) { //如果该结点是红黑树结点类型
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD) //如果链表的长度大于等于8时就会进行红黑树的转换
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount); //统计size,并且检查是否需要扩容
        return null;
    }
    
    static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS;
    }
    
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) { //空的table才能进入初始化操作
            if ((sc = sizeCtl) < 0) //小于0表示其他线程已经在初始化了或者扩容了,等待其他线程执行完成
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //使用CAS操作SIZECTL为-1,表示初始化状态
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; //初始化
                        table = tab = nt;
                        sc = n - (n >>> 2); //记录下次扩容的大小
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
    
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
    
    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                        Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
    
    //帮助从旧的table的元素复制到新的table中
    //目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,
    //而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作。
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { //新的table(nextTable)已经存在的前提下才能帮助扩容
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab); //调用扩容方法
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }
    
    private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        //更新baseCount,table的数量,counterCells表示元素个数的变化
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            //如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        //check>=0表示需要进行扩容操作
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }
    
    final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a;
        long sum = baseCount;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    sum += a.value;
            }
        }
        return sum;
    }
    

    put的过程:
    1.如果哈希数组没有初始化就先调用initTable()方法进行初始化。
    2.如果没有hash冲突就直接使用CAS插入。
    3.如果还在进行扩容操作就先进行扩容。
    4.如果存在hash冲突,就加锁来保证线程安全,这里有两种情况:一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入。
    5.如果链表元素数量大于等于阈值8,就要先转换成黑红树的结构。
    6.如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容。

    public V get(Object key)

    //查找当键与key对象相等时所对应的值对象
    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode()); //计算哈希值
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) { //哈希索引位置不为空
            if ((eh = e.hash) == h) { //首元素即为要查找的元素
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来查找,查找到就返回
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
    

    get的过程:
    1.计算hash值,定位到该table索引位置,如果是首节点符合就返回。
    2.如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回。
    3.以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null。

    public int size()

    //计算元素个数
    public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                (int)n);
    }
    
    final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a; //变化的数量
        long sum = baseCount;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    sum += a.value;
            }
        }
        return sum;
    }
    

    public V remove(Object key)

    //删除键与key对象相等的键值对,删除过程类似于插入过程
    public V remove(Object key) {
        return replaceNode(key, null, null);
    }
    
    final V replaceNode(Object key, V value, Object cv) {
        int hash = spread(key.hashCode());
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null)
                break;
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                boolean validated = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            validated = true;
                            for (Node<K,V> e = f, pred = null;;) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) {
                                        oldVal = ev;
                                        if (value != null)
                                            e.val = value;
                                        else if (pred != null)
                                            pred.next = e.next;
                                        else
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) {
                            validated = true;
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) {
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) {
                                    oldVal = pv;
                                    if (value != null)
                                        p.val = value;
                                    else if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) {
                    if (oldVal != null) {
                        if (value == null)
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }
    

    四、主题

    HashMap
    HashMap & ConcurrentHashMap -- JDK 1.7 & JDK 1.8

    相关文章

      网友评论

          本文标题:JDK源码 -- ConcurrentHashMap

          本文链接:https://www.haomeiwen.com/subject/clpajctx.html