一、概念
类定义:
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable
- 继承了AbstractMap抽象类,实现了Map接口,拥有一组Map通用的操作。
- 实现了ConcurrentMap接口,拥有一组ConcurrentMap通用的操作。
- 实现了Serializable接口,可进行序列化。
特点:
- 不允许键及值为空对象。
- 线程安全类。
- 不保证插入顺序,也不保证顺序不随时间变化。
二、使用
//TestConcurrentHashMap
public class TestConcurrentHashMap {
private static final String TAG = "TestConcurrentHashMap";
private ConcurrentHashMap<String ,String> map = new ConcurrentHashMap<>();
public void testPut() {
//map.put(null, "XXX"); //NullPointerException
//map.put("YYY", null); //NullPointerException
map.put("AAA", "111");
map.put("AAA", "11111");
map.putIfAbsent("BBB", "222");
map.putIfAbsent("BBB", "22222");
map.put("CCC", "333");
map.put("DDD", "444");
Log.d(TAG, "zwm, put map: " + map);
}
public void testRemove() {
map.remove("AAA");
map.remove("BBB", "22222");
map.remove("CCC", "333");
Log.d(TAG, "zwm, remove map: " + map);
}
public void testReplace() {
map.replace("BBB", "22222");
map.replace("DDD", "444", "44444");
Log.d(TAG, "zwm, replace map: " + map);
}
public void testGet() {
Log.d(TAG, "zwm, get DDD: " + map.get("DDD"));
}
}
//测试代码
private void testMethod() {
Log.d(TAG, "zwm, testMethod");
TestConcurrentHashMap testConcurrentHashMap = new TestConcurrentHashMap();
testConcurrentHashMap.testPut();
testConcurrentHashMap.testRemove();
testConcurrentHashMap.testReplace();
testConcurrentHashMap.testGet();
}
//输出log
2019-08-16 09:57:24.121 zwm, testMethod
2019-08-16 09:57:24.122 zwm, put map: {AAA=11111, CCC=333, BBB=222, DDD=444}
2019-08-16 09:57:24.123 zwm, remove map: {BBB=222, DDD=444}
2019-08-16 09:57:24.123 zwm, replace map: {BBB=22222, DDD=44444}
2019-08-16 09:57:24.123 zwm, get DDD: 44444
三、原理
重要参数
//哈希数组的最大容量
private static final int MAXIMUM_CAPACITY = 1 << 30;
//哈希数组的默认容量,必须为2的幂数
private static final int DEFAULT_CAPACITY = 16;
//数组可能的最大值
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//并发级别,遗留下来的,为兼容以前的版本
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//负载因子
private static final float LOAD_FACTOR = 0.75f;
//链表转红黑树阈值
static final int TREEIFY_THRESHOLD = 8;
//红黑树转链表阈值
static final int UNTREEIFY_THRESHOLD = 6;
//链表转红黑树的哈希数组的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
//每次进行转移的最小值
private static final int MIN_TRANSFER_STRIDE = 16;
//生成sizeCtl所使用的bit位数
private static int RESIZE_STAMP_BITS = 16;
//进行扩容所允许的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
//记录sizeCtl中的大小所需要进行的偏移位数
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
static final int MOVED = -1; // hash for forwarding nodes
static final int TREEBIN = -2; // hash for roots of trees
static final int RESERVED = -3; // hash for transient reservations
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
//可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
/** For serialization compatibility. */
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("segments", Segment[].class),
new ObjectStreamField("segmentMask", Integer.TYPE),
new ObjectStreamField("segmentShift", Integer.TYPE)
};
//存放Node的数组
transient volatile Node<K,V>[] table;
/*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义
*当为负数时:-1代表正在初始化,-N代表有N-1个线程正在进行扩容
*当为0时:代表当时的table还没有被初始化
*当为正数时:表示初始化或者下一次进行扩容的大小
*/
private transient volatile int sizeCtl;
数据结构
//哈希数组结点
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
//val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
volatile V val;
volatile Node<K,V> next;
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return val; }
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
public final String toString(){ return key + "=" + val; }
public final V setValue(V value) {
throw new UnsupportedOperationException();
}
public final boolean equals(Object o) {
Object k, v, u; Map.Entry<?,?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
}
/**
* Virtualized support for map.get(); overridden in subclasses.
*/
Node<K,V> find(int h, Object k) {
Node<K,V> e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
//红黑树结点
static final class TreeNode<K,V> extends Node<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next,
TreeNode<K,V> parent) {
super(hash, key, val, next);
this.parent = parent;
}
Node<K,V> find(int h, Object k) {
return findTreeNode(h, k, null);
}
/**
* Returns the TreeNode (or null if not found) for the given key
* starting at given root.
*/
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
if (k != null) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk; TreeNode<K,V> q;
TreeNode<K,V> pl = p.left, pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}
//封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制
static final class TreeBin<K,V> extends Node<K,V> {
//指向TreeNode列表和根节点
TreeNode<K,V> root;
volatile TreeNode<K,V> first;
volatile Thread waiter;
volatile int lockState;
//读写锁状态
static final int WRITER = 1; // 获取写锁的状态
static final int WAITER = 2; // 等待写锁的状态
static final int READER = 4; // 增加数据时读锁的状态
...
}
构造函数
//无参构造函数
public ConcurrentHashMap() {
}
//指定初始容量的构造函数,只是计算容量值,并没有分配内存
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
//指定Map参数的构造函数,会执行插入操作
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
//指定初始容量及负载因子的构造函数
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
//指定初始容量、负载因子及并发级别
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
//计算容量值
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
public V put(K key, V value)
//插入或更新一个键值对
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode()); //计算哈希值
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0) //如果哈希数组未进行初始化则进行初始化
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //如果哈希索引位置没有元素,则直接插入
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null))) //使用CAS操作
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED) //如果在进行扩容,则先进行扩容操作
tab = helpTransfer(tab, f);
else {
//如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点
V oldVal = null;
synchronized (f) { //使用synchronized加锁
if (tabAt(tab, i) == f) {
if (fh >= 0) { //如果该结点是链表结点类型
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { //如果该结点是红黑树结点类型
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD) //如果链表的长度大于等于8时就会进行红黑树的转换
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount); //统计size,并且检查是否需要扩容
return null;
}
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) { //空的table才能进入初始化操作
if ((sc = sizeCtl) < 0) //小于0表示其他线程已经在初始化了或者扩容了,等待其他线程执行完成
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //使用CAS操作SIZECTL为-1,表示初始化状态
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; //初始化
table = tab = nt;
sc = n - (n >>> 2); //记录下次扩容的大小
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
//帮助从旧的table的元素复制到新的table中
//目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,
//而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作。
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { //新的table(nextTable)已经存在的前提下才能帮助扩容
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab); //调用扩容方法
break;
}
}
return nextTab;
}
return table;
}
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
//更新baseCount,table的数量,counterCells表示元素个数的变化
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
//如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
//check>=0表示需要进行扩容操作
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
put的过程:
1.如果哈希数组没有初始化就先调用initTable()方法进行初始化。
2.如果没有hash冲突就直接使用CAS插入。
3.如果还在进行扩容操作就先进行扩容。
4.如果存在hash冲突,就加锁来保证线程安全,这里有两种情况:一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入。
5.如果链表元素数量大于等于阈值8,就要先转换成黑红树的结构。
6.如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容。
public V get(Object key)
//查找当键与key对象相等时所对应的值对象
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode()); //计算哈希值
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) { //哈希索引位置不为空
if ((eh = e.hash) == h) { //首元素即为要查找的元素
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来查找,查找到就返回
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
get的过程:
1.计算hash值,定位到该table索引位置,如果是首节点符合就返回。
2.如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回。
3.以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null。
public int size()
//计算元素个数
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a; //变化的数量
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
public V remove(Object key)
//删除键与key对象相等的键值对,删除过程类似于插入过程
public V remove(Object key) {
return replaceNode(key, null, null);
}
final V replaceNode(Object key, V value, Object cv) {
int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break;
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
boolean validated = false;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
validated = true;
for (Node<K,V> e = f, pred = null;;) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
else if (pred != null)
pred.next = e.next;
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) {
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) {
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}
网友评论