美文网首页我爱编程斯坦福TensorFlow教程
TensorFlow入门(八):MNIST数据的单层逻辑回归代码

TensorFlow入门(八):MNIST数据的单层逻辑回归代码

作者: 致Great | 来源:发表于2018-06-06 14:23 被阅读16次

    单层回归代码

    import tensorflow as tf
    import tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    # 初始化变量
    X = tf.placeholder(tf.float32, [None, 784], name='image')
    Y = tf.placeholder(tf.float32, [None, 10], name='label')
    
    w = tf.get_variable(name="weights", shape=(784, 10), initializer=tf.random_normal_initializer())
    b = tf.get_variable(name="bias", shape=(1, 10), initializer=tf.zeros_initializer())
    
    # 定义计算
    logits = tf.matmul(X, w) + b
    
    # 定义损失函数
    entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name="loss")
    loss = tf.reduce_mean(entropy)
    
    # 定义optimizer
    optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)
    
    # 计算机准确率
    preds = tf.nn.softmax(logits)
    correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_preds, tf.float32))
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(10000):
            batch = mnist.train.next_batch(50)
            _, batch_loss = sess.run([optimizer, loss], feed_dict={X: batch[0], Y: batch[1]})
            print("epochs:{0}:loss:{1}".format(i, batch_loss))
        test_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels})
        print(test_accuracy)
    
    

    输出结果

    相关文章

      网友评论

        本文标题:TensorFlow入门(八):MNIST数据的单层逻辑回归代码

        本文链接:https://www.haomeiwen.com/subject/cmubsftx.html