美文网首页
Task03:字符识别模型

Task03:字符识别模型

作者: 英文名字叫dawntown | 来源:发表于2020-05-26 23:28 被阅读0次

    0. CNN原理和发展

    CNN由卷积(convolution)池化(pooling)非线性激活函数(non-linear activation function)全连接层(fully connected layer)构成。通过多次卷积和池化,最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与CNN模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成 。
    与传统机器学习模型相比,CNN具有一种端到端(End to End)的思路。在CNN训练的过程中是直接从图像像素到最终的输出,并不涉及到具体的特征提取和构建模型的过程,也不需要人工的参与。

    具体概念的细节可以在这里找到。

    卷积过程,感受野逐渐增大

    CNN的网络结构和参数趋于更深和更多方向发展,出现了很多经典的网络模型,例如LeNet、AlexNet、VGG、Inception、ResNet等等。

    模型的具体结构和PyTorch构建的代码可以在这里找到。

    1. PyTorch构建CNN字符分类器

    • 一个示例分类器:包括两个卷积层用于提取特征,并联6个全连接层用于分类。
    import torch
    torch.manual_seed(0)
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.benchmark = True
    
    import torchvision.models as models
    import torchvision.transforms as transforms
    import torchvision.datasets as datasets
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torch.autograd import Variable
    from torch.utils.data.dataset import Dataset
    
    class SVHN_Model1(nn.Module):
        def __init__(self):
            super(SVHN_Model1, self).__init__()
            # CNN提取特征模块
            self.cnn = nn.Sequential(
                # 3通道输入, 16通道输出, 3x3 kernel, 右下步幅均为2
                nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
                nn.ReLU(),  
                nn.MaxPool2d(2),
                nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
                nn.ReLU(), 
                nn.MaxPool2d(2),
            )
            # 此处将用于分类的全连接层设置为6个,对每位数字进行分类
            self.fc1 = nn.Linear(32*3*7, 11)
            self.fc2 = nn.Linear(32*3*7, 11)
            self.fc3 = nn.Linear(32*3*7, 11)
            self.fc4 = nn.Linear(32*3*7, 11)
            self.fc5 = nn.Linear(32*3*7, 11)
            self.fc6 = nn.Linear(32*3*7, 11)
        
        def forward(self, img):        
            feat = self.cnn(img)
            feat = feat.view(feat.shape[0], -1)
            c1 = self.fc1(feat)
            c2 = self.fc2(feat)
            c3 = self.fc3(feat)
            c4 = self.fc4(feat)
            c5 = self.fc5(feat)
            c6 = self.fc6(feat)
            return c1, c2, c3, c4, c5, c6
    
    model = SVHN_Model1()
    
    • 训练代码如下
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化器
    optimizer = torch.optim.Adam(model.parameters(), 0.005)
    
    loss_plot, c0_plot = [], []
    # 迭代10个Epoch
    for epoch in range(10):
        for data in train_loader:
            c0, c1, c2, c3, c4, c5 = model(data[0])
            loss = criterion(c0, data[1][:, 0]) + \
                    criterion(c1, data[1][:, 1]) + \
                    criterion(c2, data[1][:, 2]) + \
                    criterion(c3, data[1][:, 3]) + \
                    criterion(c4, data[1][:, 4]) + \
                    criterion(c5, data[1][:, 5])
            loss /= 6
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            loss_plot.append(loss.item())
            c0_plot.append((c0.argmax(1) == data[1][:, 0]).sum().item()*1.0 / c0.shape[0])
            
        print(epoch)
    
      • 迁移学习:使用ImageNet与训练模型构建SVHN数据集的CNN分类器
    class SVHN_Model2(nn.Module):
        def __init__(self):
            super(SVHN_Model1, self).__init__()
    
            ################################################################
            model_conv = models.resnet18(pretrained=True)                 ##
            model_conv.avgpool = nn.AdaptiveAvgPool2d(1)                  ##                          
            model_conv = nn.Sequential(*list(model_conv.children())[:-1]) ##
            ################################################################
            self.cnn = model_conv
            
            self.fc1 = nn.Linear(512, 11)
            self.fc2 = nn.Linear(512, 11)
            self.fc3 = nn.Linear(512, 11)
            self.fc4 = nn.Linear(512, 11)
            self.fc5 = nn.Linear(512, 11)
        
        def forward(self, img):        
            feat = self.cnn(img)
            # print(feat.shape)
            feat = feat.view(feat.shape[0], -1)
            c1 = self.fc1(feat)
            c2 = self.fc2(feat)
            c3 = self.fc3(feat)
            c4 = self.fc4(feat)
            c5 = self.fc5(feat)
            return c1, c2, c3, c4, c5
    

    相关文章

      网友评论

          本文标题:Task03:字符识别模型

          本文链接:https://www.haomeiwen.com/subject/cqibahtx.html