美文网首页
Steven的R语言初级作业

Steven的R语言初级作业

作者: Steven潘 | 来源:发表于2019-03-30 22:09 被阅读0次
我的第一篇简书笔记,就从R语言的入门习题开始~

今天做了Jimmy老师的R语言初级练习题,还没有全部写完,打算分两次完成。题目的来源是http://www.bio-info-trainee.com/3793.html。除了学习Jimmy老师的B站视频和《R语言实战》的书本以外,我加入了一点点自己摸索的过程。相比起完成规定工作,或许在报错的边缘试探能够有助于强化我的记忆。生信路漫漫,跟对了人最重要,真的非常感谢Jimmy老师的热情关照~~ 小萌新今后将要不惧挫折,不懈努力!

下面就是我的作业内容了:


工作目录

> getwd()    #返回值为当前工作目录
[1] "E:/My_Program/R_Start"

向量

character <- c("abc","def","ghi")
numeric <- c(1,-2,3)
logical <- c(F,T,T)
complex <- c(1+2i,2i)
num1 <- 2:4
num2 <- seq(2.5,3.5, by=0.5)#等差数列
num3 <- rep(c(1,3), each=2) #对元素逐一重复
num4 <- rep(1:2, times=2)   #对向量重复

矩阵

matrix_a <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE)

数组

dim1 <- c("A1", "A2")
dim2 <- c("B1", "B2", "B3")
dim3 <- c("C1", "C2", "C3", "C4")
z <- array(1:24, c(2,3,4), dimnames=list(dim1, dim2, dim3))  
#dimnames是各维度的标签构成的列表
若不加标签
> z <- array(1:24, c(2,3,4))
> z
, , 1

     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6

, , 2

     [,1] [,2] [,3]
[1,]    7    9   11
[2,]    8   10   12

, , 3

     [,1] [,2] [,3]
[1,]   13   15   17
[2,]   14   16   18

, , 4

     [,1] [,2] [,3]
[1,]   19   21   23
[2,]   20   22   24

数据框

> col1 <- c(1,2,3)
> col2 <- c("a","b","c")
> df <- data.frame(col1,col2)    #用等长的向量作为列来创建数据框,向量的类型可以不同
> df
  col1 col2
1    1    a
2    2    b
3    3    c
  • 几种对数据框切片的方法
> df$col1          #用$符号取值,结果为向量
[1] 1 2 3
> df_col1 <- df$col1
> str(df_col1)
 num [1:3] 1 2 3
> df[1]            #而用[]切片,结果为数据框
  col1
1    1
2    2
3    3
> df["col1"]
  col1
1    1
2    2
3    3

> df_1 <- df[1]
> str(df_1)
'data.frame':   3 obs. of  1 variable:
 $ col1: num  1 2 3

> df_col1 <- df["col1"]
> str(df_col1)
'data.frame':   3 obs. of  1 variable:
 $ col1: num  1 2 3
> df[,1]             #用[ ,y]按列切片。第一列切出来是向量
[1] 1 2 3
> str(df[,1])
 num [1:3] 1 2 3
> df[,2]             #第二列是字符型的,切出来是因子
[1] a b c
Levels: a b c        #如果要保留向量的话,创建数据框的时候加上StringsAsFactors=F
> str(df[,2])
 Factor w/ 3 levels "a","b","c": 1 2 3
 
> df[1,1]            #用[x,y]可以取第x行第y列的元素
[1] 1
> df[1,2]
[1] a
Levels: a b c        #字符也会变成因子

> str(df[2,])        #按行切片的话,由于数据类型不一样,得到的仍是数据框
'data.frame':   1 obs. of  2 variables:
 $ col1: num 2
 $ col2: Factor w/ 3 levels "a","b","c": 2
 
对于按行切得的数据框,还可以继续切
> df[1,][2]            #得到数据框
  col2
1    a
> df[1,][,2]           #得到因子
[1] a
Levels: a b c
> df[1,]$col2          #得到因子
[1] a
Levels: a b c
> df[1,][[2]]          #得到因子
[1] a
Levels: a b c
在数据框里,用[[]]和[]切片似乎没有任何区别
> df[[1]]            #用[[]]取值,得到的也是向量
[1] 1 2 3
> str(df[[1]])
 num [1:3] 1 2 3
 
> df[[1]][2]         #进而可以取第一行第二列的元素
[1] 2
> str(df[[1]][2])
 num 2
> df[[1,2]]          #这样取元素也可以,得到了因子
[1] a
Levels: a b c
> str(df[[1,2]])
 Factor w/ 3 levels "a","b","c": 1
 
> df[["col1"]]
[1] 1 2 3
> df[["col2"]]       #这样也是因子
[1] a b c
Levels: a b c
> df[[2]]            #同理,用下标索引和标签索引结果是一样的
[1] a b c
Levels: a b c
玩了这么多,有点偏题了,咳咳
接下来做一下作业:创建一个数据框,做切片
> o <- 1:4
> p <- c("a","b","c","d")
> q <- 11:14
> r <- c(T,T,F,T)
> frame1 <- data.frame(o,p,q,r,stringsAsFactors = F)
> frame1
  o p  q     r
1 1 a 11  TRUE
2 2 b 12  TRUE
3 3 c 13 FALSE
4 4 d 14  TRUE
> frame2 <- frame1[c(1,3),][,2:4]
> frame2
  p  q     r
1 a 11  TRUE
3 c 13 FALSE

下一题

#读入sample.csv
> df=read.csv("sample.csv")
> dim(df)                 #查看行列数
[1] 768  12
> colnames(df)            #查看列名
 [1] "Accession"           "Title"              
 [3] "Sample.Type"         "Taxonomy"           
 [5] "Channels"            "Platform"           
 [7] "Series"              "Supplementary.Types"
 [9] "Supplementary.Links" "SRA.Accession"      
[11] "Contact"             "Release.Date"    
> str(df)
'data.frame':   768 obs. of  12 variables:       #12个列768行
 $ Accession          : Factor w/ 768 levels "GSM3025845","GSM3025846",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Title              : Factor w/ 768 levels "SS2_15_0048_A1",..: 1 12 18 19 20 21 22 23 24 2 ...
 $ Sample.Type        : Factor w/ 1 level "SRA": 1 1 1 1 1 1 1 1 1 1 ...
 $ Taxonomy           : Factor w/ 1 level "Mus musculus": 1 1 1 1 1 1 1 1 1 1 ...
 $ Channels           : int  1 1 1 1 1 1 1 1 1 1 ...
 $ Platform           : Factor w/ 1 level "GPL13112": 1 1 1 1 1 1 1 1 1 1 ...
 $ Series             : Factor w/ 1 level "GSE111229": 1 1 1 1 1 1 1 1 1 1 ...
 $ Supplementary.Types: Factor w/ 1 level "SRA Run Selector": 1 1 1 1 1 1 1 1 1 1 ...
 $ Supplementary.Links: Factor w/ 768 levels "https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRX3749901",..: 2 3 4 5 6 7 8 9 10 1 ...
 $ SRA.Accession      : Factor w/ 768 levels "SRX3749901","SRX3749902",..: 2 3 4 5 6 7 8 9 10 1 ...
 $ Contact            : Factor w/ 1 level "Kristian Pietras": 1 1 1 1 1 1 1 1 1 1 ...
 $ Release.Date       : Factor w/ 1 level "Nov 23, 2018": 1 1 1 1 1 1 1 1 1 1 ...

#读入SraRunTable.txt
> df1 <- read.table("SraRunTable.txt",header = TRUE, sep="\t", fill= TRUE)
> # header表示第一列是否为标题栏,fill表示是否将空的单元格用空格填充
> str(df1)
'data.frame':   768 obs. of  31 variables:
 $ BioSample         : Factor w/ 768 levels "SAMN08619908",..: 5 4 3 2 1 12 11 14 13 7 ...
 $ Experiment        : Factor w/ 768 levels "SRX3749901","SRX3749902",..: 2 3 4 5 6 7 8 9 10 1 ...
 $ MBases            : int  16 16 8 8 11 7 18 5 11 15 ...
 $ MBytes            : int  8 8 4 4 5 4 9 3 6 8 ...
 $ Run               : Factor w/ 768 levels "SRR6790711","SRR6790712",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ SRA_Sample        : Factor w/ 768 levels "SRS3006136","SRS3006137",..: 3 13 2 1 14 5 15 7 6 4 ...
 $ Sample_Name       : Factor w/ 768 levels "GSM3025845","GSM3025846",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Assay_Type        : Factor w/ 1 level "RNA-Seq": 1 1 1 1 1 1 1 1 1 1 ...
 $ AssemblyName      : Factor w/ 1 level "GCF_000001635.20": 1 1 1 1 1 1 1 1 1 1 ...
 $ AvgSpotLen        : int  43 43 43 43 43 43 43 43 43 43 ...
 $ BioProject        : Factor w/ 1 level "PRJNA436229": 1 1 1 1 1 1 1 1 1 1 ...
 $ Center_Name       : Factor w/ 1 level "GEO": 1 1 1 1 1 1 1 1 1 1 ...
 $ Consent           : Factor w/ 1 level "public": 1 1 1 1 1 1 1 1 1 1 ...
 $ DATASTORE_filetype: Factor w/ 1 level "sra": 1 1 1 1 1 1 1 1 1 1 ...
 $ DATASTORE_provider: Factor w/ 1 level "ncbi": 1 1 1 1 1 1 1 1 1 1 ...
 $ InsertSize        : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Instrument        : Factor w/ 1 level "Illumina HiSeq 2000": 1 1 1 1 1 1 1 1 1 1 ...
 $ LibraryLayout     : Factor w/ 1 level "SINGLE": 1 1 1 1 1 1 1 1 1 1 ...
 $ LibrarySelection  : Factor w/ 1 level "cDNA": 1 1 1 1 1 1 1 1 1 1 ...
 $ LibrarySource     : Factor w/ 1 level "TRANSCRIPTOMIC": 1 1 1 1 1 1 1 1 1 1 ...
 $ LoadDate          : Factor w/ 1 level "2018-03-01": 1 1 1 1 1 1 1 1 1 1 ...
 $ Organism          : Factor w/ 1 level "Mus musculus": 1 1 1 1 1 1 1 1 1 1 ...
 $ Platform          : Factor w/ 1 level "ILLUMINA": 1 1 1 1 1 1 1 1 1 1 ...
 $ ReleaseDate       : Factor w/ 1 level "2018-11-23": 1 1 1 1 1 1 1 1 1 1 ...
 $ SRA_Study         : Factor w/ 1 level "SRP133642": 1 1 1 1 1 1 1 1 1 1 ...
 $ age               : Factor w/ 1 level "14 weeks": 1 1 1 1 1 1 1 1 1 1 ...
 $ cell_type         : Factor w/ 1 level "cancer-associated fibroblasts (CAFs)": 1 1 1 1 1 1 1 1 1 1 ...
 $ marker_genes      : Factor w/ 1 level "EpCAM-, CD45-, CD31-, NG2-": 1 1 1 1 1 1 1 1 1 1 ...
 $ source_name       : Factor w/ 1 level "Mammary tumor fibroblast": 1 1 1 1 1 1 1 1 1 1 ...
 $ strain            : Factor w/ 1 level "FVB/N-Tg(MMTVPyVT)634Mul/J": 1 1 1 1 1 1 1 1 1 1 ...
 $ tissue            : Factor w/ 1 level "Mammary tumor fibroblast": 1 1 1 1 1 1 1 1 1 1 ...
 
 #合成
> df2 <- merge(df,df1,by.x="Accession",by.y="Sample_Name")    #用by将关联的两列对映起来
str(df2)
'data.frame':   768 obs. of  42 variables:
 $ Accession          : Factor w/ 768 levels "GSM3025845","GSM3025846",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Title              : Factor w/ 768 levels "SS2_15_0048_A1",..: 1 12 18 19 20 21 22 23 24 2 ...
 $ Sample.Type        : Factor w/ 1 level "SRA": 1 1 1 1 1 1 1 1 1 1 ...
 $ Taxonomy           : Factor w/ 1 level "Mus musculus": 1 1 1 1 1 1 1 1 1 1 ...
 $ Channels           : int  1 1 1 1 1 1 1 1 1 1 ...
 $ Platform.x         : Factor w/ 1 level "GPL13112": 1 1 1 1 1 1 1 1 1 1 ...
 $ Series             : Factor w/ 1 level "GSE111229": 1 1 1 1 1 1 1 1 1 1 ...
 $ Supplementary.Types: Factor w/ 1 level "SRA Run Selector": 1 1 1 1 1 1 1 1 1 1 ...
 $ Supplementary.Links: Factor w/ 768 levels "https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRX3749901",..: 2 3 4 5 6 7 8 9 10 1 ...
 $ SRA.Accession      : Factor w/ 768 levels "SRX3749901","SRX3749902",..: 2 3 4 5 6 7 8 9 10 1 ...
 $ Contact            : Factor w/ 1 level "Kristian Pietras": 1 1 1 1 1 1 1 1 1 1 ...
 $ Release.Date       : Factor w/ 1 level "Nov 23, 2018": 1 1 1 1 1 1 1 1 1 1 ...
 $ BioSample          : Factor w/ 768 levels "SAMN08619908",..: 5 4 3 2 1 12 11 14 13 7 ...
 $ Experiment         : Factor w/ 768 levels "SRX3749901","SRX3749902",..: 2 3 4 5 6 7 8 9 10 1 ...
 $ MBases             : int  16 16 8 8 11 7 18 5 11 15 ...
 $ MBytes             : int  8 8 4 4 5 4 9 3 6 8 ...
 $ Run                : Factor w/ 768 levels "SRR6790711","SRR6790712",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ SRA_Sample         : Factor w/ 768 levels "SRS3006136","SRS3006137",..: 3 13 2 1 14 5 15 7 6 4 ...
 $ Assay_Type         : Factor w/ 1 level "RNA-Seq": 1 1 1 1 1 1 1 1 1 1 ...
 $ AssemblyName       : Factor w/ 1 level "GCF_000001635.20": 1 1 1 1 1 1 1 1 1 1 ...
 $ AvgSpotLen         : int  43 43 43 43 43 43 43 43 43 43 ...
 $ BioProject         : Factor w/ 1 level "PRJNA436229": 1 1 1 1 1 1 1 1 1 1 ...
 $ Center_Name        : Factor w/ 1 level "GEO": 1 1 1 1 1 1 1 1 1 1 ...
 $ Consent            : Factor w/ 1 level "public": 1 1 1 1 1 1 1 1 1 1 ...
 $ DATASTORE_filetype : Factor w/ 1 level "sra": 1 1 1 1 1 1 1 1 1 1 ...
 $ DATASTORE_provider : Factor w/ 1 level "ncbi": 1 1 1 1 1 1 1 1 1 1 ...
 $ InsertSize         : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Instrument         : Factor w/ 1 level "Illumina HiSeq 2000": 1 1 1 1 1 1 1 1 1 1 ...
 $ LibraryLayout      : Factor w/ 1 level "SINGLE": 1 1 1 1 1 1 1 1 1 1 ...
 $ LibrarySelection   : Factor w/ 1 level "cDNA": 1 1 1 1 1 1 1 1 1 1 ...
 $ LibrarySource      : Factor w/ 1 level "TRANSCRIPTOMIC": 1 1 1 1 1 1 1 1 1 1 ...
 $ LoadDate           : Factor w/ 1 level "2018-03-01": 1 1 1 1 1 1 1 1 1 1 ...
 $ Organism           : Factor w/ 1 level "Mus musculus": 1 1 1 1 1 1 1 1 1 1 ...
 $ Platform.y         : Factor w/ 1 level "ILLUMINA": 1 1 1 1 1 1 1 1 1 1 ...
 $ ReleaseDate        : Factor w/ 1 level "2018-11-23": 1 1 1 1 1 1 1 1 1 1 ...
 $ SRA_Study          : Factor w/ 1 level "SRP133642": 1 1 1 1 1 1 1 1 1 1 ...
 $ age                : Factor w/ 1 level "14 weeks": 1 1 1 1 1 1 1 1 1 1 ...
 $ cell_type          : Factor w/ 1 level "cancer-associated fibroblasts (CAFs)": 1 1 1 1 1 1 1 1 1 1 ...
 $ marker_genes       : Factor w/ 1 level "EpCAM-, CD45-, CD31-, NG2-": 1 1 1 1 1 1 1 1 1 1 ...
 $ source_name        : Factor w/ 1 level "Mammary tumor fibroblast": 1 1 1 1 1 1 1 1 1 1 ...
 $ strain             : Factor w/ 1 level "FVB/N-Tg(MMTVPyVT)634Mul/J": 1 1 1 1 1 1 1 1 1 1 ...
 $ tissue             : Factor w/ 1 level "Mammary tumor fibroblast": 1 1 1 1 1 1 1 1 1 1 ...

R语言是基本功,我想走得扎实一些,所以每次学的内容不是太多。今天就先做这些啦,下次继续~

相关文章

  • Steven的R语言初级作业

    我的第一篇简书笔记,就从R语言的入门习题开始~ 今天做了Jimmy老师的R语言初级练习题,还没有全部写完,打算分两...

  • R语言初级作业

    首先做完了周末班工作, 包括软件安装以及R包安装: 打开 Rstudio告诉我它的工作目录。getwd() 新建6...

  • R语言初级作业

    R语言初级作业 打开 Rstudio 告诉我它的工作目录。 新建6个向量,基于不同的原子类型。(重点是字符串,数值...

  • R语言作业—初级

    教程对应B站:【生信技能树】生信人应该这样学R语言配套资料:B站的11套生物信息学公益视频配套讲义、练习题及思维导...

  • R语言作业·初级

    【作业1】当前工作目录是什么路径 【作业2】新建6个向量,基于不同的原子类型。(重点是字符串,数值,逻辑值) 【不...

  • R语言作业(初级·上)

    初级作业·上 题目链接:http://www.bio-info-trainee.com/3793.html 1.软...

  • 2019-06-15 R语言作业(初级)

    R语言作业(初级) 题目链接:http://www.bio-info-trainee.com/3793.html ...

  • R语言初级题作业笔记

    题目链接:http://www.bio-info-trainee.com/3793.html题目比较基础,我这里就...

  • R语言初级作业10题

    打开 Rstudio 告诉我它的工作目录 新建6个向量,基于不同的原子类型。(重点是字符串,数值,逻辑值) 告诉我...

  • R语言作业-初级10题

    dandanwu902019年4月9日 B站R语言视频在这里看完视频就上树!小菜鸟!初级10 个题目在这里 清空一...

网友评论

      本文标题:Steven的R语言初级作业

      本文链接:https://www.haomeiwen.com/subject/cqqebqtx.html