美文网首页
无标题文章

无标题文章

作者: beyourCAPTAIN | 来源:发表于2016-09-29 01:36 被阅读0次

    Lab 1 Homework 1.4 1.5

    Based on the knowledge of discrete system properties, we analyzed several systems and proved our predictions with MATLAB.

    1.4(a) The system y[n] = sin((π/2)x[n]) is not linear. Use the signals x1[n] =δ[n] and x2[n] = 2δ[n] to demonstrate how the system violates linearity.
    MATLAB code
     %1.4 problem (a)
    n = [-3 : 3];
    x1 = [0 0 0 1 0 0 0];
    % let x1 be an unit impulse signal
    x2 = 2*x1;
    % use x2 to testify the system
    y1 = sin((pi/2)*x1);
    y2 = sin((pi/2)*x2);
    
    % plot x1 x2 y1 and y2
    subplot(4,1,1);
    stem(n,x1)
    title('x1[n]');
    
    subplot(4,1,2);
    stem(n,y1)
    title('y1[n]');
    
    subplot(4,1,3);
    stem(n,x2)
    title('x2[n]');
    
    subplot(4,1,4);
    stem(n,y2)
    title('y2[n]'); 
    
    Result
    1.4a.png

    Observe the second and the forth image. If the system is linear, then for x2[n] = 2x1[n], y2[n] should be 2y1[n], however, the result doesn't match the assumption.

    1.4(b) The system y[n] = x[n] + x[n+1] is not causal. Use x[n] = u[n] to demonstrate this.
    MATLAB code
    % 1.4 problem(b)
    n1 = [-5:9];
    x = [zeros(1,5) ones(1,10)];
    subplot(3,1,1);
    stem(n1,x)
    title('x[n]')
    x1 = [zeros(1,4) ones(1,11)];
    subplot(3,1,2);
    stem(n1,x1) 
    title('x[n+1]')
    y = [x] + [x1];
    subplot(3,1,3);
    stem(n1,y)
    title('y[n]')
    
    Result
    1.4b.png

    For example, for y[-1]=x[-1]+x[0], the system requires future data x[0], so it is not causal.

    1.4(c) Prove the system y[n] = log(x[n]) is not stable
    MATLAB code
    %1.4 problem(c)
    n = [0:50];
    x = 2*sin(n);
    y = log(x);
    subplot(2,1,1);
    stem(n,x)
    subplot(2,1,2);
    stem(n,y)
    
    Result
    1.4c.png

    The upper one is x[n] = sin[n] which is a bounded signal, while the lower one is the output of this signal by the system, we can tell the output is not bounded. So the system is not stable.

    1.4(d) Prove the system in part (a) is not invertible.
    MATLAB code
    %1.4 problem(d)
    n = [1:10];
    x = [1 2 3 4 5 6 7 8 9 0];
    y = sin((pi/2)*x);
    stem(n,y)
    
    Result
    1.4d.png

    When the input n includes 2 4 6 ... and 2k, the system gives the same output: zero. So the system is not inversible.

    1.4(e) Analyze y[n] = x^3[n] and state whether it is linear, time invariant, causal, stable and invertible.
    The conclusion

    for y[n] = x^3[n] , it is not linear, but is time invariant, causal, stable and invertible.

    MATLAB code
    n = [-2 : 2];
    x1 = [-1 0 1 0 1]; x2 = 2*x1;
    y1 = x1.^3; y2 = x2.^3;
    subplot(4,1,1); stem(n,x1)
    title('x1[n]');
    subplot(4,1,2); stem(n,y1)
    title('y1[n]');
    subplot(4,1,3); stem(n,x2)
    title('x2[n]');
    subplot(4,1,4); stem(n,y2)
    title('y2[n]');
    
    Result
    1.4e_linear.png
    1.5(a)
    1.5 (a).png
    1.5(b)
    1.5(b)new.png
    1.5(c)
    1.5(c)a.png 1.5(c)b.png
    1.5(d)
    1.5(d) alpha.png 1.5(d).png

    相关文章

      网友评论

          本文标题:无标题文章

          本文链接:https://www.haomeiwen.com/subject/cqykyttx.html