美文网首页
屏幕显示图像解析及屏幕卡顿现象

屏幕显示图像解析及屏幕卡顿现象

作者: Y丶舜禹 | 来源:发表于2021-04-01 14:57 被阅读0次

在了解屏幕卡顿现象之前,我们先来了解一下屏幕显示图像的原理。

屏幕显示图像的原理

屏幕显示

首先从过去的 CRT 显示器原理说起。CRT 的电子枪按照上面方式,从上到下一行行扫描,扫描完成后显示器就呈现一帧画面,随后电子枪回到初始位置继续下一次扫描。为了把显示器的显示过程和系统的视频控制器进行同步,显示器(或者其他硬件)会用硬件时钟产生一系列的定时信号。当电子枪换到新的一行,准备进行扫描时,显示器会发出一个水平同步信号(horizonal synchronization),简称HSync;而当一帧画面绘制完成后,电子枪回复到原位,准备画下一帧前,显示器会发出一个垂直同步信号(vertical synchronization),简称 VSync。显示器通常以固定频率进行刷新,这个刷新率就是 VSync 信号产生的频率。尽管现在的设备大都是液晶显示屏了,但原理仍然没有变。

原理

通常来说,计算机系统中CPU、GPU、显示器是以上面这种方式协同工作的。CPU 计算好显示内容提交到 GPU,GPU 渲染完成后将渲染结果放入帧缓冲区,随后视频控制器会按照 VSync 信号逐行读取帧缓冲区的数据,经过可能的数模转换传递给显示器显示。

屏幕卡顿

在最简单的情况下,帧缓冲区只有一个,这时帧缓冲区的读取和刷新都都会有比较大的效率问题。为了解决效率问题,显示系统通常会引入两个缓冲区,即双缓冲机制。在这种情况下,GPU 会预先渲染好一帧放入一个缓冲区内,让视频控制器读取,当下一帧渲染好后,GPU 会直接把视频控制器的指针指向第二个缓冲器。如此一来效率会有很大的提升。

双缓冲虽然能解决效率问题,但会引入一个新的问题。当视频控制器还未读取完成时,即屏幕内容刚显示一半时,GPU 将新的一帧内容提交到帧缓冲区并把两个缓冲区进行交换后,视频控制器就会把新的一帧数据的下半段显示到屏幕上,造成画面撕裂现象,如下图:


2251862-d6e1a2be72e67054.png

为了解决这个问题,GPU 通常有一个机制叫做垂直同步(简写也是 V-Sync),当开启垂直同步后,GPU 会等待显示器的 VSync 信号发出后,才进行新的一帧渲染和缓冲区更新。这样能解决画面撕裂现象,也增加了画面流畅度,但需要消费更多的计算资源,也会带来部分延迟。

那么目前主流的移动设备是什么情况呢?从网上查到的资料可以知道,iOS 设备会始终使用双缓存+垂直同步。而安卓设备直到 4.1 版本,Google 才开始引入这种机制,目前安卓系统是三缓存+垂直同步。

卡顿产生的原因和解决方案

在 VSync 信号到来后,系统图形服务会通过 CADisplayLink 等机制通知 App,App 主线程开始在 CPU 中计算显示内容,比如视图的创建、布局计算、图片解码、文本绘制等。随后 CPU 会将计算好的内容提交到 GPU 去,由 GPU 进行变换、合成、渲染。随后 GPU 会把渲染结果提交到帧缓冲区去,等待下一次 VSync 信号到来时显示到屏幕上。由于垂直同步的机制,如果在一个 VSync 时间内,CPU 或者 GPU 没有完成内容提交,则那一帧就会被丢弃,等待下一次机会再显示,而这时显示屏会保留之前的内容不变。这就是界面卡顿的原因。

从上面的图中可以看到,CPU 和 GPU 不论哪个阻碍了显示流程,都会造成掉帧现象。所以开发时,也需要分别对 CPU 和 GPU 压力进行评估和优化。

CPU 资源消耗原因和解决方案

对象创建
对象的创建会分配内存、调整属性、甚至还有读取文件等操作,比较消耗 CPU 资源。尽量用轻量的对象代替重量的对象,可以对性能有所优化。比如 CALayerUIView 要轻量许多,那么不需要响应触摸事件的控件,用 CALayer 显示会更加合适。如果对象不涉及 UI 操作,则尽量放到后台线程去创建,但可惜的是包含有 CALayer 的控件,都只能在主线程创建和操作。通过 Storyboard创建视图对象时,其资源消耗会比直接通过代码创建对象要大非常多,在性能敏感的界面里,Storyboard 并不是一个好的技术选择。

尽量推迟对象创建的时间,并把对象的创建分散到多个任务中去。尽管这实现起来比较麻烦,并且带来的优势并不多,但如果有能力做,还是要尽量尝试一下。如果对象可以复用,并且复用的代价比释放、创建新对象要小,那么这类对象应当尽量放到一个缓存池里复用。

对象调整
对象的调整也经常是消耗 CPU 资源的地方。这里特别说一下 CALayer:CALayer 内部并没有属性,当调用属性方法时,它内部是通过运行时 resolveInstanceMethod为对象临时添加一个方法,并把对应属性值保存到内部的一个Dictionary 里,同时还会通知delegate、创建动画等等,非常消耗资源。UIView 的关于显示相关的属性(比如 frame/bounds/transform)等实际上都是 CALayer 属性映射来的,所以对 UIView 的这些属性进行调整时,消耗的资源要远大于一般的属性。对此你在应用中,应该尽量减少不必要的属性修改。

当视图层次调整时,UIView、CALayer 之间会出现很多方法调用与通知,所以在优化性能时,应该尽量避免调整视图层次、添加和移除视图。

对象销毁
对象的销毁虽然消耗资源不多,但累积起来也是不容忽视的。通常当容器类持有大量对象时,其销毁时的资源消耗就非常明显。同样的,如果对象可以放到后台线程去释放,那就挪到后台线程去。这里有个小 Tip:把对象捕获到 block 中,然后扔到后台队列去随便发送个消息以避免编译器警告,就可以让对象在后台线程销毁了。

NSArray *tmp  =  self.array;
self.array  =  nil;
dispatch_async(queue,  ^{
    [tmp class];
});

布局计算
视图布局的计算是 App 中最为常见的消耗 CPU 资源的地方。如果能在后台线程提前计算好视图布局、并且对视图布局进行缓存,那么这个地方基本就不会产生性能问题了。

不论通过何种技术对视图进行布局,其最终都会落到对 UIView.frame/bounds/center等属性的调整上。上面也说过,对这些属性的调整非常消耗资源,所以尽量提前计算好布局,在需要时一次性调整好对应属性,而不要多次、频繁的计算和调整这些属性。

Autolayout

Autolayout 是苹果本身提倡的技术,在大部分情况下也能很好的提升开发效率,但是 Autolayout 对于复杂视图来说常常会产生严重的性能问题。随着视图数量的增长,Autolayout 带来的 CPU 消耗会呈指数级上升。 如果你不想手动调整 frame 等属性,你可以用一些工具方法替代(比如常见的 left/right/top/bottom/width/height快捷属性),或者使用 ComponentKit、AsyncDisplayKit 等框架。

文本计算
如果一个界面中包含大量文本(比如微博微信朋友圈等),文本的宽高计算会占用很大一部分资源,并且不可避免。如果你对文本显示没有特殊要求,可以参考下 UILabel 内部的实现方式:用[NSAttributedString boundingRectWithSize:options:context:]来计算文本宽高,用-[NSAttributedString drawWithRect:options:context:]来绘制文本。尽管这两个方法性能不错,但仍旧需要放到后台线程进行以避免阻塞主线程。

如果你用 CoreText 绘制文本,那就可以先生成 CoreText 排版对象,然后自己计算了,并且 CoreText 对象还能保留以供稍后绘制使用。

文本渲染
屏幕上能看到的所有文本内容控件,包括UIWebView,在底层都是通过 CoreText 排版、绘制为 Bitmap显示的。常见的文本控件 (UILabel、UITextView 等),其排版和绘制都是在主线程进行的,当显示大量文本时,CPU 的压力会非常大。对此解决方案只有一个,那就是自定义文本控件,用 TextKit 或最底层的 CoreText 对文本异步绘制。尽管这实现起来非常麻烦,但其带来的优势也非常大,CoreText 对象创建好后,能直接获取文本的宽高等信息,避免了多次计算(调整 UILabel 大小时算一遍、UILabel 绘制时内部再算一遍);CoreText 对象占用内存较少,可以缓存下来以备稍后多次渲染。

图片的解码
当你用 UIImage 或 CGImageSource 的那几个方法创建图片时,图片数据并不会立刻解码。图片设置到 UIImageView 或者 CALayer.contents 中去,并且 CALayer 被提交到 GPU 前,CGImage 中的数据才会得到解码。这一步是发生在主线程的,并且不可避免。如果想要绕开这个机制,常见的做法是在后台线程先把图片绘制到 CGBitmapContext 中,然后从 Bitmap直接创建图片。目前常见的网络图片库都自带这个功能。

图像的绘制
图像的绘制通常是指用那些以CG开头的方法把图像绘制到画布中,然后从画布创建图片并显示这样一个过程。这个最常见的地方就是[UIView drawRect:]里面了。由于CoreGraphic方法通常都是线程安全的,所以图像的绘制可以很容易的放到后台线程进行。一个简单异步绘制的过程大致如下(实际情况会比这个复杂得多,但原理基本一致):

-  (void)display  {
    dispatch_async(backgroundQueue,  ^{
        CGContextRef ctx  =  CGBitmapContextCreate(...);
        // draw in context...
        CGImageRef img  =  CGBitmapContextCreateImage(ctx);
        CFRelease(ctx);
        dispatch_async(mainQueue,  ^{
            layer.contents  =  img;
        });
    });
}

GPU 资源消耗原因和解决方案

相对于 CPU 来说,GPU 能干的事情比较单一:接收提交的纹理(Texture)和顶点描述(三角形),应用变换(transform)、混合并渲染,然后输出到屏幕上。通常你所能看到的内容,主要也就是纹理(图片)和形状(三角模拟的矢量图形)两类。

纹理的渲染
所有的Bitmap,包括图片、文本、栅格化的内容,最终都要由内存提交到显存,绑定为 GPU Texture。不论是提交到显存的过程,还是 GPU 调整和渲染 Texture 的过程,都要消耗不少 GPU 资源。当在较短时间显示大量图片时(比如 TableView 存在非常多的图片并且快速滑动时),CPU 占用率很低,GPU 占用非常高,界面仍然会掉帧。避免这种情况的方法只能是尽量减少在短时间内大量图片的显示,尽可能将多张图片合成为一张进行显示。

当图片过大,超过 GPU 的最大纹理尺寸时,图片需要先由 CPU 进行预处理,这对 CPU 和 GPU 都会带来额外的资源消耗。目前来说,iPhone 4S 以上机型,纹理尺寸上限都是4096x4096,更详细的资料可以看这里:iosres.com。所以,尽量不要让图片和视图的大小超过这个值。

视图的混合 (Composing)
当多个视图(或者说 CALayer)重叠在一起显示时,GPU 会首先把他们混合到一起。如果视图结构过于复杂,混合的过程也会消耗很多 GPU 资源。为了减轻这种情况的 GPU 消耗,应用应当尽量减少视图数量和层次,并在不透明的视图里标明 opaque 属性以避免无用的Alpha通道合成。当然,这也可以用上面的方法,把多个视图预先渲染为一张图片来显示。

图形的生成
CALayer 的border、圆角、阴影、遮罩(mask),CASharpLayer 的矢量图形显示,通常会触发离屏渲染(offscreen rendering),而离屏渲染通常发生在 GPU 中。当一个列表视图中出现大量圆角的 CALayer,并且快速滑动时,可以观察到 GPU 资源已经占满,而 CPU 资源消耗很少。这时界面仍然能正常滑动,但平均帧数会降到很低。为了避免这种情况,可以尝试开启 CALayer.shouldRasterize属性,但这会把原本离屏渲染的操作转嫁到 CPU 上去。在下个文章我们会探索离屏渲染产生的原因及如何避免离屏渲染,敬请期待。

补充知识

【面试题】UIView和CALayer的关系

  • UIView基于UIKit框架,可以处理用户触摸事件,并管理子视图
  • CALayer基于CoreAnimation,而CoreAnimation是基于QuartzCode的。所以CALayer只负责显示,不能处理用户的触摸事件
  • 从父类来说,CALayer继承的是NSObject,而UIView是直接继承自UIResponder的,所以UIVIew相比CALayer而言,只是多了事件处理功能,
  • 从底层来说,UIView属于UIKit的组件,而UIKit的组件到最后都会被分解成layer,存储到图层树中
  • 在应用层面来说,需要与用户交互时,使用UIView,不需要交互时,使用两者都可以

** UIView 与 CALayer各自的作用**
UIView

  • UIView属于UIKIt
  • 负责绘制图形和动画操作
  • 用于界面布局和子视图的管理
  • 处理用户的点击事件

CALayer

  • CALayer属于CoreAnimation
  • 只负责显示,且显示的是位图
  • CALayer既用于UIKit,也用于APPKit,
    ==> UIKit是iOS平台的渲染框架,APPKit是Mac OSX系统下的渲染框架,
    ==> 由于iOS和Mac两个系统的界面布局并不是一致的,iOS是基于多点触控的交互方式,而Mac OSX是基于鼠标键盘的交互方式,且分别在对应的框架中做了布局的操作,所以并不需要layer载体去布局,且不用迎合任何布局方式。

相关文章

  • 屏幕显示图像解析及屏幕卡顿现象

    在了解屏幕卡顿现象之前,我们先来了解一下屏幕显示图像的原理。 屏幕显示图像的原理 首先从过去的 CRT 显示器原理...

  • iOS 渲染流程和屏幕卡顿原因

    屏幕卡顿 屏幕卡顿是指图形显示到屏幕上时,出现了图像撕裂、掉帧等问题 卡顿原因 图形、图像显示到屏幕上,需要经过C...

  • 深入理解IOS离屏渲染

    目录:图像显示原理1.1 将图像显示到屏幕的流程1.2 显示器显示流程UI卡顿、掉帧2.1 屏幕撕裂 Screen...

  • 屏幕卡顿 及 iOS中OpenGL渲染架构分析

    屏幕卡顿 屏幕卡顿是指图形图像的在显示时出现了撕裂(即图片错位显示)、掉帧(重复显示同一帧数据)等问题,导致用户能...

  • ios性能优化-卡顿优化和耗电优化

    1 卡顿产生的原因及优化 产生卡顿是由于屏幕的成像显示导致,而屏幕画面的显示离不开手机的CPU和GPU; CPU:...

  • ios--离屏渲染详解

    目录: 1.图像显示原理 2.图像显示原理2.1 图像到屏幕的流程2.2 显示器显示的流程 3.卡顿、掉帧3.1...

  • 屏幕图像显示原理与卡顿

    当 CPU 遇到图像处理的需求时,会调用 GPU 进行处理,主要流程可以分为以下四步: 1.将主存的处理数据复制到...

  • 性能优化:屏幕卡顿优化

    一、屏幕成像原理及屏幕卡顿原因二、屏幕卡顿优化三、定量监测屏幕FPS四、定位卡顿效果五、定位耗时代码六、果然好客服...

  • 图像显示及屏幕渲染

    1、图像显示原理2、UI卡顿、掉帧3、异步绘制4、离屏渲染 图像显示原理 图像的显示实际上要经过CPU的布局、计算...

  • iOS屏幕撕裂、屏幕卡顿、离屏渲染的相关探究

    这篇文章我们来探究下屏幕撕裂、屏幕卡顿、离屏渲染。 一、屏幕撕裂 在探究屏幕撕裂问题之前,我们需要先了解下屏幕显示...

网友评论

      本文标题:屏幕显示图像解析及屏幕卡顿现象

      本文链接:https://www.haomeiwen.com/subject/crylhltx.html