美文网首页核心论证
意识波粒二象的详细论证(3)

意识波粒二象的详细论证(3)

作者: 傅天行 | 来源:发表于2019-01-08 20:36 被阅读10次
    单电子双缝实验

    谁不惊异于量子理论,谁就没有理解它。―尼尔斯·玻尔

    意识具有波粒二象性的革命性认识是以著名的单电子双缝实验为可靠的实验基础,以数学家冯·诺依曼对双缝实验整个过程的严谨数学分析而论证出只有意识才能导致波函数坍缩这一重要结论,在此基础上进一步逻辑推导出意识必然具有波粒二象性的全新认识。

    单电子双缝实验是最严格可靠的经验现象,也是最深邃难解的经验现象,它也是唯一的将观察者的意识不得不考虑在内的物理实验,它是哲学思考最可靠的逻辑起点,包含了哲学的几乎所有奥秘。以这个实验为哲学认识的阿基米德基点,可以撬动整个宇宙。

    神奇的单电子双缝实验

    单电子双缝实验是量子力学最根本最重要的一个实验,2002年,美国《物理世界》杂志将其评选为物理学十大最出色实验的第一名[1],也可以说它是人类历史上最神奇的一个物理实验。这个小小实验把波粒二象性和量子之谜的诡异性展现得淋漓尽致,极大的冲击了我们的世界观,长期以来困惑了包括爱因斯坦在内的众多物理学家,围绕这个实验现象的解释,至今依然争论不休。物理学家理查德·费恩曼说:“单电子双缝实验包含了量子力学的核心,事实上,它包含着独一无二的奥秘。我们不能通过说明它如何作用来消除这个奥秘.我们只是告诉你,它是怎样起作用的。在告诉你它怎样起作用的同时,我们也将告诉你所有量子力学的基本特色。”[2]

    关于这个实验可以详细查看以下动画演示,该动画非常形象生动的演示了电子双缝实验的神奇现象。


    单电子双缝干涉实验动画演示

    神奇现象一:大量电子穿过双缝形成干涉条纹

    日常世界正常的踢出多个足球而形成两道条纹 日常世界踢出足球形成多道干涉条纹并不可能

    在电子双缝实验中,当我们将一束电子流经过中间的双缝打到最终的显示屏上,根据经验常识,电子只是类似足球一样的颗粒状的单一微小物体,在日常世界中,假如我们连续的踢出大量足球而经过中间有两道狭缝的墙,那么最终的球网上只会形成两道条纹,绝无可能形成多道干涉条纹。可是,电子双缝实验的结果却与我们的常识经验严重背离,屏幕上最终形成的是只有波才能形成的干涉条纹。

    那么会不会是大量电子互相碰撞才造成如此呢?它们如果互相碰撞确实有可能改变电子运动的路径,虽然不一定形成干涉条纹,但还是应该把这种可能性彻底排除掉。于是我们可以改进实验装置,让电子枪一个一个地先后发射电子,间隔时间可以超过一秒钟,然后再看一下实验结果究竟如何。

    当一个电子被打过去时,屏幕上只出现一个亮点,更多的电子过去,就有更多的亮点出现。初看起来,这些点杂乱无章,而随着时间的推移,当越来越多的电子被打过去时,大量的电子形成的大量的点逐步组成了只有波才能形成的干涉条纹!

    由于电子是一个一个的前后相隔很长时间才发射出去的,那么根据这个可以逻辑推断出单个电子必须是一种广延性的波,同时通过双缝进而自身和自身发生干涉,如此才能形成只有波才能形成的干涉条纹,可是这怎么可能呢?一个电子根本不可能是一个波,因为我们日常观察到的波都是多粒子的集群波动现象,单个的局域小粒子怎么可能是广延的集群性的波?又怎么可能如分身术一样同时通过两道狭缝?这是双缝实验产生的神秘难解的现象之一。

    大量电子前后一个一个通过双缝,形成奇怪的干涉条纹

    神奇现象二:观察电子如何通过双缝,干涉条纹消失

    为了解决上面的困惑,我们需要观察电子到底是如何通过双缝的,是不是真的有神奇的“电子分身术”,于是我们在双缝旁边安装了探测器,看看电子到底从哪条缝通过,如何通过的,这个实验被称为“which-way”实验,1998年德国Konstanz大学的Dürr和Rempe完成了该实验。[3]

    在双缝旁边安装探测器观察电子如何通过双缝

    神奇的实验结果再次超出了人们的想象,当我们去通过探测器观察电子到底如何同时通过双缝时,电子竟然又老老实实地从一个缝隙穿过去,只有波才能形成的干涉条纹也随之消失!屏幕上出现的是两条经典亮条纹!也就是说,小小的观察竟然改变了电子的存在特性,使得电子从波又变成了粒子,观察为什么会有如此的神奇作用?这样的实验结果更让我们迷惑不已,这究竟是为什么呢?

    在双缝旁边安装探测器,干涉条纹消失,形成两条经典亮纹

    单电子双缝实验最初是物理学家费曼在1961年提出的思想实验。由于这个实验需要的缝隙大小在纳米量级,当时的技术条件无法实现。1974年意大利Bologna大学的科学家Merli、Missiroli和Pozzi用“单电子”来实验[4],他们让单个电子穿过双棱镜,一种和双缝有类似功能的电子光学器件。让电子有间隔地、一个一个发射出去。然后在荧屏上记录电子的位置,最终观察到干涉条纹的出现。

    真正实现了费曼提出的单电子双缝实验,是2013年美国和加拿大科学家罗杰·巴赫(Roger Bach)和达米安·波普( Damian Pope)等人所完成的实验[5]。他们在镀金硅膜上制造了一个宽62纳米,长4微米,缝间距为272纳米的双缝。为了每次遮住一条缝,一个由压电致动器控制的微小遮罩可以在两缝间来回滑动。实验中电子由一个钨灯丝产生,并在600伏电场中被加速,之后校准成电子束。在电子穿过双缝后,将会在一个多通道感光底片上被观测到。在这个实验中,两个狭缝都可以随意机械式地打开和关闭,最重要的是,它具备了一次检测一个电子的功能,该实验的电子源强度很低以至于每秒仅约一个电子被观测到,这保证每次仅单个电子将穿过双缝,经过长达两个多小时的实验,最终实验图像显示的依然是干涉条纹。

    从1801年最早的杨氏双缝实验到2013年的单电子双缝实验,跨度达到200年,让我们见证了波粒二象性和量子世界的神奇。

    对双缝实验的解释

    双缝实验有力的证明了电子这样的物质粒子也有波动性,但是对物质粒子波动性的理解却经过了长期的激烈争论,德布罗意以及薛定谔等量子物理的开创者们,包括爱因斯坦在内,对波动性的理解都受到了经典物理观念的影响,产生了种种错误,甚至爱因斯坦直到临死之前,都没有接受量子力学对波粒二象的理解。

    对双缝实验的第一种解释是纯粒子观点的解释,这种观点认为电子只能是粒子,而不可能是波动。之所以形成干涉条纹是因为不同粒子之间相互作用而导致的,所谓的波动性是由于有大量电子分布于空间而形成一种疏密波,类似于空气振动出现的纵波,由于分子密度疏密相间而形成的一种波动性分布。但是这种看法却与实验现象是明显矛盾的,因为在试验中,我们让电子一个一个地从电子枪发射而出,虽然刚开始无法形成干涉条纹,但只要时间足够长,屏幕上仍将出现明暗相间的干涉条纹。这表明电子的波动性并不是很多电子在空间聚集在一起时才显现出来,单个电子也有波动性。将电子理解成纯粒子,夸大了粒子性的一面,抹杀了波动性的一面,这是一种片面的错误理解。

    对双缝实验的第二种解释是纯波动观点的解释,这种观点认为电子并非离散性的小颗粒,而是三维空间连续分布的物质波包,波包大小即粒子大小,波包的群速度即电子的运行速度,因而产生了干涉现象,薛定谔早期就坚持这种观点。但是这种观点也遇到了非常严重的困难,因为经过严格的计算以后,随着时间的推移,单个粒子的物质波包必定要扩散,也就是说,粒子将会越来越胖,这又明显违背实验结果,因为试验中我们观察到的单个电子,都是局域在空间内的很小区域,是颗粒状的。而且如果电子是三维空间的物质波包,那么在电子衍射实验当中,电子波碰到晶体发生衍射,我们在空间中不同方向上将看到电子的一部分,这又和实验是严重矛盾的,我们从来观察到的都是一个一个的完整的电子。将电子理解成纯波动,夸大了波动性的一面,抹杀了粒子性的一面,也是一种片面的错误理解。

    波函数的统计诠释

    1926年,量子论的奠基人之一马克斯·波恩在《碰撞过程的量子力学》[6]这篇论文第一次提出波函数的统计诠释,从而化解了这个难题,并且被无数实验所确证,波恩也因此而获得1954年的诺贝尔物理学奖。根据波函数的统计诠释,电子的波动并非真实三维空间的物理波,而是一种抽象的概率波。在数学上,用一函数表示描写粒子的波,这个函数叫波函数。描述粒子的波函数,实际上刻画的是粒子在空间的概率分布。在通过双缝时,概率波发生了自身和自身的相干叠加,此时表现为波动性,进而产生了干涉条纹。当电子到达显示屏,我们对它进行观测时,电子的波函数就发生了瞬时性的随机坍缩,进而呈现为显示屏的上的一个小亮点,此时表现为粒子性。虽然一个电子的出现是随机的,但大量电子却符合概率分布,于是,当大量电子出现的时候,便形成了干涉条纹。

    电子从开始发射到通过双缝,再到达最后的屏幕上究竟是如何的行踪呢?彼得·柯文尼教授如此回答:"如果认为量子力学给出了最基本的描述,那么询问电子的行踪就没有意义,除非电子已经打到了屏幕上。因此我们只好得出结论说,电子是以某种方式扩散在空间和时间之中,它从两条狭缝中都穿过并且自己与自己发生干涉,直到最后奇迹般地瞬间瓦解在屏幕上某一点处,这地点完全是随机的。因而,我们可以说,电子是处处在,同时又是处处不在。"[7]

    电子处处在的意思是说它在全空间(整个宇宙)都有分布的概率,即便遥远的仙女星系依然有分布概率,只是概率值非常微小。电子的处处不在,意思说尽管它在全空间都有分布的概率,但是它却没有出现在任何空间位置上,除非对电子的波函数进行观察测量,促使其坍缩到一个具体的空间位置上,让其显现出来。而电子一旦坍缩显现出来,那么它在全空间范围内的其他空间位置的不同的分布概率值,瞬间全部变为零,遥远的仙女星系那个概率值也变为了零。

    电子究竟是什么?它既不是经典粒子,也不是经典的波,但我们可以说它是粒子和波动两重性矛盾的统一,这就是波粒二象性。电子不是经典的粒子,是因为它没有经典粒子确定的连续性轨道,它在空间中非连续性的跃迁,量子粒子保留了经典粒子的颗粒性(分立性)。电子不是经典的波动,是因为它并非真实的物理波,而是抽象的概率波,量子波动保留了经典波动的相干叠加性。马根瑙(H . Margenau )在指出对波粒二象性的一些常见误解后也说道:“电子既不是粒子也不是波动,按照今天最广泛地持有并且同已经建立起来的量子力学理论程式相协调的观点,一个电子是一件抽象的事物,它不再能使用日常经验所熟悉的样子去直觉地理解。”[8]

    当我们不观察时,电子处于一种叠加态,它无处不在。当我们观察时,它就出现在了概率分布的某一个位置。量子的叠加态正是这奇怪的根源!我们从未见过一个宏观物体处于叠加态之中。一个人可能既在北京又在上海吗?不可能,人没有分身术。可是,一个粒子就可以,理论上来说,它确实有一定几率既在你眼前,又远在天边。

    这样的解释让人们产生了很多质疑,也因此,量子论从诞生之日起就饱受争议,被不断地攻击。就连量子论的创始人普朗克、薛定谔、爱因斯坦这样伟大的科学家,也试图找出它的漏洞,以从根本上将量子论颠覆掉。然而,一个个精确的实验,却一次次击碎了人们的梦想。量子论逐渐成为了一个工具,物理学家们觉得只要好用就行了,干吗非要理解它呢?就像鸵鸟一样,将头埋在沙里,不去看它吧,这就是“闭嘴计算解释”。

    这种实用主义和工具主义的闭嘴计算解释并不能让我这样喜欢追根问底的人满意,现在我们就要深入的考察波粒二象之谜,这就需要谈到冯诺依曼的一个惊天认识:意识导致波函数坍缩

    参考文献:
    1.乔治·约翰逊.最美丽的十大物理实验[J]. 物理教学探讨. 2009(18): 24-25.
    2.[美]费曼.《费恩曼物理学讲义(第3卷)》[M].上海科学技术出版社.2013
    3.Merli P G, Missiroli G F and Pozzi G On the statistical aspect of electron interference phenomena[J].Am.J. Phys. 1976.44 306–7
    4.Dürr S, Nonn T, Rempe G. Fringe Visibility and Which-Way Information in an Atom Interferometer[J]. Physical Review Letters. 1998, 81(26): 5705-5709.
    5.Bach R, Pope D, Liou S. Controlled double-slit electron diffraction[J]. New Journal of Physics. 2013, 15.
    6.M.Born,"Zur Quantenmechanik der Stossvorgange",Z. Physik 37,863-867
    7.彼得·柯文尼. 《时间之箭-揭开时间最大奥秘之科学旅程》[M]. 湖南科学技术出版社, 2002.
    8.关洪. 《一代神话:哥本哈根学派》[M].武汉出版社, 2002.

    下一篇:※ 意识波粒二象的详细论证(4)

    ——

    相关文章

      网友评论

        本文标题:意识波粒二象的详细论证(3)

        本文链接:https://www.haomeiwen.com/subject/ctzbrqtx.html