参考 https://www.cnblogs.com/bigsai/p/11393609.html
1. 前序遍历
前序的规则就是
根结点 ---> 左子树 ---> 右子树
.我们在调用递归前进行节点操作。对于前序,就是先访问(输出)该节点。而递归左,递归右侧,会优先递归左侧。直到没有左节点。才会停止。访问次序大致为:
测试用例:
(1) 递归版本
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x): val(x), left(NULL), right(NULL) {}
};
void preOrder(TreeNode *root) {
if (root) {
std::cout << root->val << ",";
preOrder(root->left);
preOrder(root->right);
}
}
// 以下为测试例子
int main() {
TreeNode *root1 = new TreeNode(3);
TreeNode *left1 = new TreeNode(9);
TreeNode *right1 = new TreeNode(20);
TreeNode *left2 = new TreeNode(15);
TreeNode *right2 = new TreeNode(7);
root1 -> left = left1;
root1 -> right = right1;
right1 -> left = left2;
right1 -> right = right2;
preOrder(root1);
}
前序遍历结果:3,9,20,15,7
(2) 非递归版本
利用栈,栈的顺序为先进先出。那么顺序如何添加?递归是左递归,右递归。但是利用栈要相反,因为如果左进栈、右进栈会出现以下后果:
所以,利用递归的思路,需要先放
右节点进栈,再放左节点进栈
,这个下次·再取节点取到左节点·,这个节点再右节点进栈,左节点进栈。然后循环一直到最后会一直优先取到左节点。达到和递归顺序相仿效果。
void preOrder(TreeNode *root) {
stack<TreeNode *> s;
s.push(root);
while (!s.empty()) {
TreeNode *curr = s.top();
std::cout << curr->val << ",";
s.pop();
if (curr -> right)
s.push(curr -> right);
if (curr -> left)
s.push(curr -> left);
}
}
2. 中序遍历
中序遍历的规则是:
左子树---> 根结点 ---> 右子树
。所以我们访问节点的顺序需要变
(1) 递归版本
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x): val(x), left(NULL), right(NULL) {}
};
void midOrder(TreeNode *root) {
if (root) {
midOrder(root->left);
std::cout << root->val << ",";
midOrder(root->right);
}
}
int main() {
TreeNode *root1 = new TreeNode(3);
TreeNode *left1 = new TreeNode(9);
TreeNode *right1 = new TreeNode(20);
TreeNode *left2 = new TreeNode(15);
TreeNode *right2 = new TreeNode(7);
root1 -> left = left1;
root1 -> right = right1;
right1 -> left = left2;
right1 -> right = right2;
midOrder(root1);
}
中序遍历结果:9,3,15,20,7
(2) 非递归版本
中序排列的顺序是:
左节点,根节点,右节点
。那么我们在经过根节点的前面节点不能释放, 因为后面还需要用到它。所以要用栈先储存。
它的规则大致为:
- 栈依次存入左节点所有点,直到最左侧在栈顶。
-
开始抛出栈顶并访问。(例如第一个抛出2)。如果有右节点。那么将右节点加入栈中,然后右节点一致左下遍历直到尾部。
void midOrder2(TreeNode *root) {
stack<TreeNode *> s;
TreeNode *p = root;
while (!s.empty() || p) {
//一直遍历到左子树最下边,边遍历边保存根节点到栈中
while(p) {
s.push(p);
p = p->left;
}
// 当p为空时,说明已经到达左子树最下边,这时需要出栈了
if (!s.empty()) {
p = s.top();
std::cout << p->val << ",";
s.pop();
p = p->right;
}
}
}
3. 后序遍历
后序遍历
就是左子树 ---> 右子树 ---> 根结点
(1) 递归版本
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x): val(x), left(NULL), right(NULL) {}
};
void postOrder(TreeNode *root) {
if (root) {
postOrder(root->left);
postOrder(root->right);
std::cout << root->val << ",";
}
}
int main() {
TreeNode *root1 = new TreeNode(3);
TreeNode *left1 = new TreeNode(9);
TreeNode *right1 = new TreeNode(20);
TreeNode *left2 = new TreeNode(15);
TreeNode *right2 = new TreeNode(7);
root1 -> left = left1;
root1 -> right = right1;
right1 -> left = left2;
right1 -> right = right2;
postOrder(root1);
}
后序遍历结果:9,15,7,20,3
(2) 非递归版本
void postOrder2(TreeNode *root) {
stack<pair<TreeNode*, bool> > s;
TreeNode *p = root;
while (!s.empty() || p) {
while (p) {
s.push(make_pair(p, false));
p = p->left;
}
if (!s.empty()) {
pair<TreeNode*, bool> curr = s.top();
if (curr.second) {
std::cout << curr.first->val << ",";
s.pop();
}
else {
curr.second = true;
p = p->right;
}
}
}
}
4. 层序遍历
https://blog.csdn.net/FX677588/article/details/74276513
层序遍历所要解决的问题很好理解,就是按二叉树从上到下,从左到右依次打印每个节点中存储的数据。如下图:
按层序遍历的原则,打印顺序依次应该是:A->B->C->D->E->F->G
void levelOrder(TreeNode *root){
queue<TreeNode *> fatherQueue, childQueue;
TreeNode *p = root;
if (p)
fatherQueue.push(p);
while (!fatherQueue.empty()) {
p = fatherQueue.front();
std::cout << p->val << ",";
fatherQueue.pop();
if (p->left)
childQueue.push(p->left);
if (p->right)
childQueue.push(p->right);
if (fatherQueue.empty() && !childQueue.empty()) {
swap(fatherQueue, childQueue);
}
}
}
网友评论