美文网首页大数据
hive字段级别血缘实现

hive字段级别血缘实现

作者: 烂泥_119c | 来源:发表于2021-02-18 21:25 被阅读0次

    背## 背景

    • 为便于hive表数据上下游的管理(评估逻辑变更的影响、快速追溯数据来源),需要构建hive字段级别的数据血缘,hive本身提供提供了一个用于打印数据血缘的钩子类,我们可以借助其来进行实现。

    准备工作

    这个钩子类将血缘关系以日志的形式输出,为了拿到这里的血缘关系,首先我们要准备log4j的配置文件。

    • hive-log4j2.properties
    status = INFO
    name = HiveLog4j2
    packages = org.apache.hadoop.hive.ql.log
    
    property.hive.log.level = INFO
    property.hive.root.loggr = DRFA
    property.hive.log.dir = .
    property.hive.log.file = hive.log
    
    appenders = console, DRFA, lineage
    
    # 这里省略 console, DRFA的配置 都是些常规配置
    # ......
    loggers = LineageLogger
    
    # lineage
    logger.lineageLogger.name = org.apache.hadoop.hive.ql.hooks.lineageLogger
    logger.lineageLogger.level = INFO
    logger.lineageLogger.additivity = false
    logger.lineageLogger.appenderRefs = lineage
    appender.lineage.type = RollingRandomAccessFile
    appender.lineage.fileName = ${sys:hive.log.dir}/hive_lineage.log
    appender.lineage.filePattern = ${sys:hive.log.dir}/hive_lineage.log.%d{yyyy-MM-dd}
    appender.lineage.layout.type = PatternLayout
    appender.lineage.layout.pattern = %m%n
    
    • hive脚本运行前指定日志配置文件,并设置钩子
    set hive.log4j.file=hive-log4j2.properties
    set hive.exec.post.hooks=org.apache.hadoop.hive.ql.hooks.LineageLogger
    

    运行

    • 经过以上配置,hive脚本执行完毕后,会在服务器本地生成一个日志文件: hive_lineage.log
    • 解析该日志文件,即可得到字段级别的血缘关系

    举例

    • 如,执行下面的hiveQL
    CREATE TABLE tmp_zone_info AS
    SELECT z.zoneid AS zone_id,
             z.zonename AS zone_name,
             c.cityid AS city_id,
             c.cityname AS city_name
    FROM dict_zoneinfo z
    LEFT JOIN dict_cityinfo c
        ON z.cityid = c.cityid
            AND z.dt='20210218'
            AND c.dt='20210218'
    WHERE z.dt='20210218'
            AND c.dt='20210218';
    
    • 得到的日志文件,经格式化如下图所示(摘抄自网络):
    {
        "version": "1.0",
        "user": "hadoop",
        "timestamp": 1510307578,
        "duration": 30629,
        "jobIds": [
            "job_1509088410884_16739"
        ],
        "engine": "mr",
        "database": "cxy7_dw",
        "hash": "4484378cebc5e2b0b55fb34368d861b0",
        "queryText": "CREATE TABLE tmp_zone_info AS SELECT z.zoneid AS zone_id,z.zonename AS zone_name, c.cityid AS city_id, c.cityname AS city_name FROM dict_zoneinfo z LEFT JOIN dict_cityinfo c ON z.cityid = c.cityid AND z.dt='20171109' AND c.dt='20171109' WHERE z.dt='20171109' AND c.dt='20171109'",
        "edges": [
            {
                "sources": [
                    4
                ],
                "targets": [
                    0
                ],
                "edgeType": "PROJECTION"
            },
            {
                "sources": [
                    5
                ],
                "targets": [
                    1
                ],
                "edgeType": "PROJECTION"
            },
            {
                "sources": [
                    6
                ],
                "targets": [
                    2
                ],
                "edgeType": "PROJECTION"
            },
            {
                "sources": [
                    7
                ],
                "targets": [
                    3
                ],
                "edgeType": "PROJECTION"
            },
            {
                "sources": [
                    8,
                    6
                ],
                "targets": [
                    0,
                    1,
                    2,
                    3
                ],
                "expression": "(z.cityid = c.cityid)",
                "edgeType": "PREDICATE"
            },
            {
                "sources": [
                    9
                ],
                "targets": [
                    0,
                    1,
                    2,
                    3
                ],
                "expression": "(c.dt = '20171109')",
                "edgeType": "PREDICATE"
            },
            {
                "sources": [
                    10,
                    9
                ],
                "targets": [
                    0,
                    1,
                    2,
                    3
                ],
                "expression": "((z.dt = '20171109') and (c.dt = '20171109'))",
                "edgeType": "PREDICATE"
            }
        ],
        "vertices": [
            {
                "id": 0,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.tmp_zone_info.zone_id"
            },
            {
                "id": 1,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.tmp_zone_info.zone_name"
            },
            {
                "id": 2,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.tmp_zone_info.city_id"
            },
            {
                "id": 3,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.tmp_zone_info.city_name"
            },
            {
                "id": 4,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_zoneinfo.zoneid"
            },
            {
                "id": 5,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_zoneinfo.zonename"
            },
            {
                "id": 6,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_cityinfo.cityid"
            },
            {
                "id": 7,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_cityinfo.cityname"
            },
            {
                "id": 8,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_zoneinfo.cityid"
            },
            {
                "id": 9,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_cityinfo.dt"
            },
            {
                "id": 10,
                "vertexType": "COLUMN",
                "vertexId": "cxy7_dw.dict_zoneinfo.dt"
            }
        ]
    }
    
    • 日志文件中对表中的字段进行了编码,通过source/target表示字段的血缘关系,格式比较简单,不再赘述。 这里说明一下,edgeType 有 PREDICATE(谓语) 和 PROJECTION(投射) 两种取值,PROJECTION投射就是我们要的数据血缘, PREDICATE谓语则是一些过滤逻辑。
    • 需要注意的是,这里使用with语法时,无法打出血缘。

    相关文章

      网友评论

        本文标题:hive字段级别血缘实现

        本文链接:https://www.haomeiwen.com/subject/dcnnxltx.html