美文网首页
MMDetection英文文档翻译---3_exist_data

MMDetection英文文档翻译---3_exist_data

作者: xuanxi | 来源:发表于2021-04-20 17:25 被阅读0次

3: Train with customized models and standard datasets用标准数据集训练一个自定义模型

In this note, you will know how to train, test and inference your own customized models under standard datasets.

在这篇文章中,您将知道如何在标准数据集下训练、测试和推断您自己的定制模型。

We use the cityscapes dataset to train a customized Cascade Mask R-CNN R50 model as an example to demonstrate the whole process, which using AugFPN to replace the defalut FPN as neck, and add Rotate or Translate as training-time auto augmentation.

我们以cityscapes数据集训练一个自定义的级联 Mask R-CNN R50模型为例来演示整个过程,使用' AugFPN '替换默认的' FPN '作为颈部,并添加' Rotate '或' Translate '作为训练时间的自动增强。

The basic steps are as below:基本步骤如下:

  1. Prepare the standard dataset 准备你的标注数据集

  2. Prepare your own customized model 准备你的自定义模型

  3. Prepare a config 准备一个config

  4. Train, test, and inference models on the standard dataset. 训练、测试、预测模型在标准数据集上

Prepare the standard dataset 准备标准数据集

In this note, as we use the standard cityscapes dataset as an example.

在本说明中,我们使用标准的cityscape数据集作为示例。

It is recommended to symlink the dataset root to $MMDETECTION/data. If your folder structure is different, you may need to change the corresponding paths in config files.

推荐使用符号链接数据集根目录到' $MMDETECTION/data '。

如果您的文件夹结构不同,您可能需要更改配置文件中相应的路径。

>mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── cityscapes
│   │   ├── annotations
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012

The cityscapes annotations have to be converted into the coco format using

cityscapes标注模式转换为coco模式

tools/dataset_converters/cityscapes.py:

>pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./data/cityscapes/annotations

Currently the config files in cityscapes use COCO pre-trained weights to initialize. You could download the pre-trained models in advance if network is unavailable or slow, otherwise it would cause errors at the beginning of training.

目前, cityscapes中的配置文件使用COCO预先训练的权重来初始化。

如果网络不通或速度慢,可以提前下载预训练的模型,否则在开始训练时就会出现错误。

Prepare your own customized model准备你自己的自定义模型

The second step is to use your own module or training setting. Assume that we want to implement a new neck called AugFPN to replace with the default FPN under the existing detector Cascade Mask R-CNN R50. The following implementsAugFPN under MMDetection.

第二步是使用您自己的模块或训练设置。假设我们想实现一个名为“AugFPN”的新颈,以替换现有检测器级联掩码R-CNN R50下的默认“FPN”。下面在MMDetection下实现' augfpn '。

1. Define a new neck (e.g. AugFPN)定义一个新的neck

Firstly create a new file mmdet/models/necks/augfpn.py.

第一步新创建一个文件mmdet/models/necks/augfpn.py.

>from ..builder import NECKS

@NECKS.register_module()
class AugFPN(nn.Module):

 def __init__(self,
 in_channels,
 out_channels,
 num_outs,
 start_level=0,
 end_level=-1,
 add_extra_convs=False):
 pass

 def forward(self, inputs):
 # implementation is ignored
 pass

2. Import the module导入模块

You can either add the following line to mmdet/models/necks/__init__.py,

你可以添加以下行到' mmdet/models/necks/init.py ',

>from .augfpn import AugFPN

or alternatively add

或者添加

>custom_imports = dict(
 imports=['mmdet.models.necks.augfpn.py'],
 allow_failed_imports=False)

to the config file and avoid modifying the original code.

到配置文件,并避免修改原始代码。

3. Modify the config file 修改config文件

>neck=dict(
 type='AugFPN',
 in_channels=[256, 512, 1024, 2048],
 out_channels=256,
 num_outs=5)

For more detailed usages about customize your own models (e.g. implement a new backbone, head, loss, etc) and runtime training settings (e.g. define a new optimizer, use gradient clip, customize training schedules and hooks, etc), please refer to the guideline Customize Models and Customize Runtime Settings respectively.

关于自定义您自己的模型(例如,实现一个新的骨干,头部,损失等)和运行时训练设置(例如,定义一个新的优化器,使用梯度剪辑,自定义训练时间表和钩子等)的更详细的用法,请参考指南定制模型定制运行时设置

Prepare a config

The third step is to prepare a config for your own training setting. Assume that we want to add AugFPN and Rotate or Translate augmentation to existing Cascade Mask R-CNN R50 to train the cityscapes dataset, and assume the config is under directory configs/cityscapes/ and named as cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py, the config is as below.

第三步是为您自己的训练设置准备配置。假设我们想要添加“AugFPN”和“旋转”或“翻译”增加到现有的Mask R-CNN R50 cityscapes 数据集训练,和假设配置是在目录configs/cityscapes/和“cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py”,下面的配置一样。

># The new config inherits the base configs to highlight the necessary modification
_base_ = [
 '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
 '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
]

model = dict(
 # set None to avoid loading ImageNet pretrained backbone,
 # instead here we set `load_from` to load from COCO pretrained detectors.
 pretrained=None,
 # replace neck from defaultly `FPN` to our new implemented module `AugFPN`
 neck=dict(
 type='AugFPN',
 in_channels=[256, 512, 1024, 2048],
 out_channels=256,
 num_outs=5),
 # We also need to change the num_classes in head from 80 to 8, to match the
 # cityscapes dataset's annotation. This modification involves `bbox_head` and `mask_head`.
 roi_head=dict(
 bbox_head=[
 dict(
 type='Shared2FCBBoxHead',
 in_channels=256,
 fc_out_channels=1024,
 roi_feat_size=7,
 # change the number of classes from defaultly COCO to cityscapes
 num_classes=8,
 bbox_coder=dict(
 type='DeltaXYWHBBoxCoder',
 target_means=[0., 0., 0., 0.],
 target_stds=[0.1, 0.1, 0.2, 0.2]),
 reg_class_agnostic=True,
 loss_cls=dict(
 type='CrossEntropyLoss',
 use_sigmoid=False,
 loss_weight=1.0),
 loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
 loss_weight=1.0)),
 dict(
 type='Shared2FCBBoxHead',
 in_channels=256,
 fc_out_channels=1024,
 roi_feat_size=7,
 # change the number of classes from defaultly COCO to cityscapes
 num_classes=8,
 bbox_coder=dict(
 type='DeltaXYWHBBoxCoder',
 target_means=[0., 0., 0., 0.],
 target_stds=[0.05, 0.05, 0.1, 0.1]),
 reg_class_agnostic=True,
 loss_cls=dict(
 type='CrossEntropyLoss',
 use_sigmoid=False,
 loss_weight=1.0),
 loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
 loss_weight=1.0)),
 dict(
 type='Shared2FCBBoxHead',
 in_channels=256,
 fc_out_channels=1024,
 roi_feat_size=7,
 # change the number of classes from defaultly COCO to cityscapes
 num_classes=8,
 bbox_coder=dict(
 type='DeltaXYWHBBoxCoder',
 target_means=[0., 0., 0., 0.],
 target_stds=[0.033, 0.033, 0.067, 0.067]),
 reg_class_agnostic=True,
 loss_cls=dict(
 type='CrossEntropyLoss',
 use_sigmoid=False,
 loss_weight=1.0),
 loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
 ],
 mask_head=dict(
 type='FCNMaskHead',
 num_convs=4,
 in_channels=256,
 conv_out_channels=256,
 # change the number of classes from defaultly COCO to cityscapes
 num_classes=8,
 loss_mask=dict(
 type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

# over-write `train_pipeline` for new added `AutoAugment` training setting
img_norm_cfg = dict(
 mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
 dict(
 type='AutoAugment',
 policies=[
 [dict(
 type='Rotate',
 level=5,
 img_fill_val=(124, 116, 104),
 prob=0.5,
 scale=1)
 ],
 [dict(type='Rotate', level=7, img_fill_val=(124, 116, 104)),
 dict(
 type='Translate',
 level=5,
 prob=0.5,
 img_fill_val=(124, 116, 104))
 ],
 ]),
 dict(
 type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
 dict(type='RandomFlip', flip_ratio=0.5),
 dict(type='Normalize', **img_norm_cfg),
 dict(type='Pad', size_divisor=32),
 dict(type='DefaultFormatBundle'),
 dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]

# set batch_size per gpu, and set new training pipeline
data = dict(
 samples_per_gpu=1,
 workers_per_gpu=3,
 # over-write `pipeline` with new training pipeline setting
 train=dict(dataset=dict(pipeline=train_pipeline)))

# Set optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# Set customized learning policy
lr_config = dict(
 policy='step',
 warmup='linear',
 warmup_iters=500,
 warmup_ratio=0.001,
 step=[8])
total_epochs = 10

# We can use the COCO pretrained Cascade Mask R-CNN R50 model for more stable performance initialization
load_from = 'http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth'

Train a new model 训练一个新模型

To train a model with the new config, you can simply run要用新的配置训练模型,您可以简单地运行

>python tools/train.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py

For more detailed usages, please refer to the Case 1.

Test and inference测试和推断

To test the trained model, you can simply run要测试训练过的模型,您可以简单地运行

>python tools/test.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py work_dirs/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py/latest.pth --eval bbox segm

For more detailed usages, please refer to the Case 1.

相关文章

网友评论

      本文标题:MMDetection英文文档翻译---3_exist_data

      本文链接:https://www.haomeiwen.com/subject/deinlltx.html