美文网首页
MMDetection英文文档翻译---2_new_data_m

MMDetection英文文档翻译---2_new_data_m

作者: xuanxi | 来源:发表于2021-04-20 14:32 被阅读0次

2: Train with customized datasets训练自定义数据集

In this note, you will know how to inference, test, and train predefined models with customized datasets.

在这个本章中,你将知道如何用自己的数据集训练、测试和预训练模型

We use the balloon dataset as an example to describe the whole process.

我们使用balloon dataset作为例子来描述这整个过程

The basic steps are as below:

基本步骤如下:

  1. Prepare the customized dataset准备自定义的数据集

  2. Prepare a config准备config文件

  3. Train, test, inference models on the customized dataset.训练、测试、推断在自定义的数据集上

Prepare the customized dataset准备自己的数据集

There are three ways to support a new dataset in MMDetection:

  1. reorganize the dataset into COCO format.将数据集重新组织成coco格式

  2. reorganize the dataset into a middle format.将数据集重新组织成中间的格式

  3. implement a new dataset.实现一个新的数据集

Usually we recommend to use the first two methods which are usually easier than the third.

In this note, we give an example for converting the data into COCO format.

通常我们建议使用前两种方法,这两种方法通常比第三种方法简单。

在本文中,我们给出了一个将数据转换为coco格式的示例。

Note: MMDetection only supports evaluating mask AP of dataset in COCO format for now. So for instance segmentation task users should convert the data into coco format.

注意:MMDetection目前只支持对COCO格式数据集的mask AP进行评估。

因此,例如分割任务,用户应该将数据转换为coco格式。

COCO annotation format coco标注形式

The necessary keys of COCO format for instance segmentation is as below, for the complete details, please refer here.以下是实例分割所需的COCO格式,完整的细节请参考

>{
 "images": [image],
 "annotations": [annotation],
 "categories": [category]
}


image = {
 "id": int,
 "width": int,
 "height": int,
 "file_name": str,
}

annotation = {
 "id": int,
 "image_id": int,
 "category_id": int,
 "segmentation": RLE or [polygon],
 "area": float,
 "bbox": [x,y,width,height],
 "iscrowd": 0 or 1,
}

categories = [{
 "id": int,
 "name": str,
 "supercategory": str,
}]

Assume we use the balloon dataset.

假设我们使用balloon数据集

After downloading the data, we need to implement a function to convert the annotation format into the COCO format. Then we can use implemented COCODataset to load the data and perform training and evaluation.

下载数据之后,我们需要实现一个函数来将annotation格式转换为COCO格式。然后我们可以使用实现的COCODataset加载数据,并执行训练和评估。

If you take a look at the dataset, you will find the dataset format is as below:

如果你看一下数据集,你会发现数据集的格式如下:

>{'base64_img_data': '',
 'file_attributes': {},
 'filename': '34020010494_e5cb88e1c4_k.jpg',
 'fileref': '',
 'regions': {'0': {'region_attributes': {},
 'shape_attributes': {'all_points_x': [1020,
 1000,
 994,
 1003,
 1023,
 1050,
 1089,
 1134,
 1190,
 1265,
 1321,
 1361,
 1403,
 1428,
 1442,
 1445,
 1441,
 1427,
 1400,
 1361,
 1316,
 1269,
 1228,
 1198,
 1207,
 1210,
 1190,
 1177,
 1172,
 1174,
 1170,
 1153,
 1127,
 1104,
 1061,
 1032,
 1020],
 'all_points_y': [963,
 899,
 841,
 787,
 738,
 700,
 663,
 638,
 621,
 619,
 643,
 672,
 720,
 765,
 800,
 860,
 896,
 942,
 990,
 1035,
 1079,
 1112,
 1129,
 1134,
 1144,
 1153,
 1166,
 1166,
 1150,
 1136,
 1129,
 1122,
 1112,
 1084,
 1037,
 989,
 963],
 'name': 'polygon'}}},
 'size': 1115004}

The annotation is a JSON file where each key indicates an image's all annotations. The code to convert the balloon dataset into coco format is as below.

annotation是一个JSON文件,其中每个键都表示图像的所有annotation。

将 balloon 数据集转换为coco格式的代码如下所示。

>import os.path as osp

def convert_balloon_to_coco(ann_file, out_file, image_prefix):
 data_infos = mmcv.load(ann_file)

 annotations = []
 images = []
 obj_count = 0
 for idx, v in enumerate(mmcv.track_iter_progress(data_infos.values())):
 filename = v['filename']
 img_path = osp.join(image_prefix, filename)
 height, width = mmcv.imread(img_path).shape[:2]

 images.append(dict(
 id=idx,
 file_name=filename,
 height=height,
 width=width))

 bboxes = []
 labels = []
 masks = []
 for _, obj in v['regions'].items():
 assert not obj['region_attributes']
 obj = obj['shape_attributes']
 px = obj['all_points_x']
 py = obj['all_points_y']
 poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
 poly = [p for x in poly for p in x]

 x_min, y_min, x_max, y_max = (
 min(px), min(py), max(px), max(py))


 data_anno = dict(
 image_id=idx,
 id=obj_count,
 category_id=0,
 bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
 area=(x_max - x_min) * (y_max - y_min),
 segmentation=[poly],
 iscrowd=0)
 annotations.append(data_anno)
 obj_count += 1

 coco_format_json = dict(
 images=images,
 annotations=annotations,
 categories=[{'id':0, 'name': 'balloon'}])
 mmcv.dump(coco_format_json, out_file)

Using the function above, users can successfully convert the annotation file into json format, then we can use CocoDataset to train and evaluate the model.

通过上面的函数,用户可以成功地将annotation文件转换成json格式,然后我们可以使用‘CocoDataset’对模型进行训练和评估。

Prepare a config 准备一个config

The second step is to prepare a config thus the dataset could be successfully loaded. Assume that we want to use Mask R-CNN with FPN, the config to train the detector on balloon dataset is as below. Assume the config is under directory configs/balloon/ and named as mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py, the config is as below.

第二步是准备一个config,这样数据集就可以成功加载。假设我们想使用带有FPN的Mask R-CNN,在balloon数据集上训练detector的配置如下。假设配置在' configs/balloon/ '目录下,命名为' mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py ',配置如下所示。

># The new config inherits a base config to highlight the necessary modification
_base_ = 'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'

# We also need to change the num_classes in head to match the dataset's annotation
model = dict(
 roi_head=dict(
 bbox_head=dict(num_classes=1),#这里的num_classes需要根据你的自定义数据集类别来更改
 mask_head=dict(num_classes=1)))

# Modify dataset related settings
dataset_type = 'COCODataset'#更改成你自定义的数据集的路径
classes = ('balloon',)
data = dict(
 train=dict(
 img_prefix='balloon/train/',
 classes=classes,
 ann_file='balloon/train/annotation_coco.json'),
 val=dict(
 img_prefix='balloon/val/',
 classes=classes,
 ann_file='balloon/val/annotation_coco.json'),
 test=dict(
 img_prefix='balloon/val/',
 classes=classes,
 ann_file='balloon/val/annotation_coco.json'))

# We can use the pre-trained Mask RCNN model to obtain higher performance
load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'
#选择一个已经训练好的模型来训练你自定义的数据集

Train a new model 训练一个新的模型

To train a model with the new config, you can simply run要用新的config训练模型,您可以简单地运行

>python tools/train.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py

For more detailed usages, please refer to the Case 1.

Test and inference测试和推理

To test the trained model, you can simply run要测试训练过的模型,您可以简单地运行

>python tools/test.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py work_dirs/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py/latest.pth --eval bbox segm

For more detailed usages, please refer to the Case 1.

相关文章

网友评论

      本文标题:MMDetection英文文档翻译---2_new_data_m

      本文链接:https://www.haomeiwen.com/subject/jnoglltx.html