美文网首页程序员
四:类结构分析四:Cache_t

四:类结构分析四:Cache_t

作者: Mr姜饼 | 来源:发表于2020-11-19 16:50 被阅读0次
    前情回顾:

    !! 两节课为大家介绍了class_data_bits_t中的class_rw_t,然后从中获取我们的成员变量属性,以及我们的对象方法,并且能通过元类获取我们的类方法.

    本节知识点:

    !!! 我们来讲解cache_t

    
    struct objc_class : objc_object {
        // Class ISA;
        Class superclass;
        cache_t cache;             // formerly cache pointer and vtable
        class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
    
        class_rw_t *data() const {
            return bits.data();
        }
        void setData(class_rw_t *newData) {
            bits.setData(newData);
        }
    }
    

    三个环境的cache_t(macOS、真机、模拟器)

    
    struct cache_t {
    #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED  //macOS环境
        explicit_atomic<struct bucket_t *> _buckets;
        explicit_atomic<mask_t> _mask;
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16 //真机环境
        explicit_atomic<uintptr_t> _maskAndBuckets;
        mask_t _mask_unused;
        static constexpr uintptr_t maskShift = 48;
        static constexpr uintptr_t maskZeroBits = 4;
        static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
       
        static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
            static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4 // 模拟器环境
       
        explicit_atomic<uintptr_t> _maskAndBuckets;
        mask_t _mask_unused;
        static constexpr uintptr_t maskBits = 4;
        static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
        static constexpr uintptr_t bucketsMask = ~maskMask;
    #else
    #error Unknown cache mask storage type.
    #endif
        
    #if __LP64__
        uint16_t _flags;
    #endif
        uint16_t _occupied;
    
    public:
        static bucket_t *emptyBuckets();
        
        struct bucket_t *buckets();
        mask_t mask();
        mask_t occupied();
        void incrementOccupied();
        void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
        void initializeToEmpty();
    
        unsigned capacity();
        bool isConstantEmptyCache();
        bool canBeFreed();
    
    
    }
    

    cache_t重要的几个参数和方法"_buckets","_mask","_flags","_occupied","buckets()","occupied",

    struct bucket_t {
        // SEL-first is better for armv7* and i386 and x86_64.
    #if __arm64__
        explicit_atomic<uintptr_t> _imp;
        explicit_atomic<SEL> _sel;
    #else
        explicit_atomic<SEL> _sel;
        explicit_atomic<uintptr_t> _imp;
    #endif
    
    public:
       inline SEL sel() const { return _sel.load(memory_order::memory_order_relaxed); }
    
        inline IMP imp(Class cls) const {
            //省略
        }
        template <Atomicity, IMPEncoding>
        void set(SEL newSel, IMP newImp, Class cls);
    };
    
    

    bucket_t重要的几个参数和方法"_sel","_imp"," imp(Class cls) ","sel()"

    • lldb调试:
    @interface HJTeacher : HJPerson
    - (void)function_1;
    - (void)function_2;
    - (void)function_3;
    - (void)function_4;
    
    @end
    
    @implementation HJTeacher
    - (void)function_1{
    }
    - (void)function_2{
    }
    - (void)function_3{
    }
    - (void)function_4{
    }
    @end
    
    //i386:macos/模拟器
    //x86 :模拟器
    //arm64 真机
    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            Class pClass  = [HJTeacher class];
            HJTeacher* p = [HJTeacher alloc];
            [p function_1];
            [p function_2];
            [p function_3];
            [p function_4];
            NSLog(@"%@",pClass);
        }
        return 0;
    }
    
    
    • 1. 论证"ISA","superClass"各占8个字节
    image.png
    • 2. 首地址平移16字节,即可拿到 "cache_t" 数据 , 0x0000000100002410 -> 0x0000000100002420
    image.png

    此时cache中并没有存储数据

    • 3. 断点下移,走完“function_1”方法,接着再次打印cache,发现找到sel
      image.png

    解释:p *($10+1) 是根据指针平移的操作,意思是下标+1的操作,也就是数组list的下标+1的操作,其实可以等价于 p $9.bukets()[1]

    image.png

    !!! 问题思考:为什么function_1 没有存储在[0]号位置,却在1号位置????

    !!! 问题思考: mask的值为什么为3,????

    !!! 问题思考: occupied的值为什么为1,????

    • ``4. 断点下移,走完“function_2”方法,接着再次打印


      image.png

    function2 在第0号位置,mask依然为3
    !!! 问题思考: occupied的值为什么为2,????

    • ``5. 断点下移,走完“function_3”方法,接着再次打印


      image.png

    !!! 问题思考:为什么 function_3 存储在[0]号位置,之前存储的function2 为何却不见了,并且原来在1号位置的function1 也不见了????

    !!! 问题思考: mask的值为什么为7????

    带着问题看源码

    重要源码部分

    void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
    {
    #if CONFIG_USE_CACHE_LOCK
        cacheUpdateLock.assertLocked();
    #else
        runtimeLock.assertLocked();
    #endif
    
    
        //
        ASSERT(sel != 0 && cls->isInitialized());
    
        // Use the cache as-is if it is less than 3/4 full
        mask_t newOccupied = occupied() + 1;
        unsigned oldCapacity = capacity(), capacity = oldCapacity;
        if (slowpath(isConstantEmptyCache())) {
            // Cache is read-only. Replace it.
            if (!capacity) capacity = INIT_CACHE_SIZE;
            reallocate(oldCapacity, capacity, /* freeOld */false);
        }
        else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) { // 4  3 + 1 bucket cache_t
            // Cache is less than 3/4 full. Use it as-is.
            printf("");
        }
        else {
            capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;  // 扩容两倍 4
            if (capacity > MAX_CACHE_SIZE) {
                capacity = MAX_CACHE_SIZE;
            }
            reallocate(oldCapacity, capacity, true);  // 内存 库容完毕
        }
    
        bucket_t *b = buckets();
        mask_t m = capacity - 1;
        mask_t begin = cache_hash(sel, m);
        mask_t i = begin;
    
        // Scan for the first unused slot and insert there.
        // There is guaranteed to be an empty slot because the
        // minimum size is 4 and we resized at 3/4 full.
        do {
            if (fastpath(b[i].sel() == 0)) {
                incrementOccupied();
                b[i].set<Atomic, Encoded>(sel, imp, cls);
                return;
            }
            if (b[i].sel() == sel) {
                // The entry was added to the cache by some other thread
                // before we grabbed the cacheUpdateLock.
                return;
            }
        } while (fastpath((i = cache_next(i, m)) != begin));
    
        cache_t::bad_cache(receiver, (SEL)sel, cls);
    }
    
    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
    {
        bucket_t *oldBuckets = buckets();
        bucket_t *newBuckets = allocateBuckets(newCapacity);
    
        // Cache's old contents are not propagated. 
        // This is thought to save cache memory at the cost of extra cache fills.
        // fixme re-measure this
    
        ASSERT(newCapacity > 0);
        ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
    
        setBucketsAndMask(newBuckets, newCapacity - 1);
        
        if (freeOld) {
            cache_collect_free(oldBuckets, oldCapacity);
        }
    }
    
    
    • 流程梳理 (按照每个方法的执行步骤开始疏通流程)
            [p function_1];
            [p function_2];
            [p function_3];
            [p function_4];
    
    
    • function_1为断点,进入cache的流程

    首先判断cache是否为空,第一次的时候进入“reallocate”

    if (slowpath(isConstantEmptyCache())) {
            // Cache is read-only. Replace it.
            if (!capacity) capacity = INIT_CACHE_SIZE; //值为 4
            reallocate(oldCapacity, capacity, /* freeOld */false);
        }
    

    reallocate 方法中,开辟一个“newCapacity”(4)大小内存的newBuckets,并将此赋值给_buckets, ,此时并不进入“cache_collect_free”方法

    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
    {
        bucket_t *oldBuckets = buckets(); //获取之前存在的buckets,第一次肯定为空
    
        bucket_t *newBuckets = allocateBuckets(newCapacity);//开辟一个“newCapacity”大小内存的bucket_t
    
        setBucketsAndMask(newBuckets, newCapacity - 1);//初始化
        if (freeOld) {//当存在老buckets的时候,释放之前的缓存空间
            cache_collect_free(oldBuckets, oldCapacity);
        }
    }
    

    setBucketsAndMask 方法 ,初始化buckets,并且将_occupied 归0.

    void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
    {
        // objc_msgSend uses mask and buckets with no locks.
        // It is safe for objc_msgSend to see new buckets but old mask.
        // (It will get a cache miss but not overrun the buckets' bounds).
        // It is unsafe for objc_msgSend to see old buckets and new mask.
        // Therefore we write new buckets, wait a lot, then write new mask.
        // objc_msgSend reads mask first, then buckets.
    
    #ifdef __arm__
        // ensure other threads see buckets contents before buckets pointer
        mega_barrier();
    
        _buckets.store(newBuckets, memory_order::memory_order_relaxed);
        
        // ensure other threads see new buckets before new mask
        mega_barrier();
        
        _mask.store(newMask, memory_order::memory_order_relaxed);
        _occupied = 0;
    #elif __x86_64__ || i386
        // ensure other threads see buckets contents before buckets pointer
        _buckets.store(newBuckets, memory_order::memory_order_release);
        
        // ensure other threads see new buckets before new mask
        _mask.store(newMask, memory_order::memory_order_release);
        _occupied = 0;
    #else
    #error Don't know how to do setBucketsAndMask on this architecture.
    #endif
    }
    

    验证: 将sel和imp存入buckets中的bucket,利用哈希算法计算出存储位置,这也是为什么buckets中的元素位置是错乱的原因,另外可以得到mask的值为 4-1 = 3 !!!!,并且也验证了 occupied的 值为已经存储的sel的个数

        bucket_t *b = buckets();//获取_buckets
        mask_t m = capacity - 1; //此时为4-1 = 3,
        mask_t begin = cache_hash(sel, m); //哈希算法获取下标
        mask_t i = begin;    
        do {
            if (fastpath(b[i].sel() == 0)) {
                incrementOccupied();
                b[i].set<Atomic, Encoded>(sel, imp, cls);
                return;
            }
            if (b[i].sel() == sel) {
                // The entry was added to the cache by some other thread
                // before we grabbed the cacheUpdateLock.
                return;
            }
        } while (fastpath((i = cache_next(i, m)) != begin));
    
    • function_3为断点,进入cache的流程
      进行扩容操作,此时传入的capacity值为8
    else {
            capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;  // 扩容两倍 4
            if (capacity > MAX_CACHE_SIZE) {
                capacity = MAX_CACHE_SIZE;
            }
            reallocate(oldCapacity, capacity, true);  // 内存 库容完毕
        }
    

    重新进行buckets的内存开辟,开辟的大小为8,并且occupied值重新置为0,并且进入cache_collect_free方法

    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
    {
        bucket_t *oldBuckets = buckets();
        bucket_t *newBuckets = allocateBuckets(newCapacity);
    
        // Cache's old contents are not propagated. 
        // This is thought to save cache memory at the cost of extra cache fills.
        // fixme re-measure this
    
        ASSERT(newCapacity > 0);
        ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
    
        setBucketsAndMask(newBuckets, newCapacity - 1);
        
        if (freeOld) {
            cache_collect_free(oldBuckets, oldCapacity);
        }
    }
    

    cache_collect_free 方法 ,清除旧的buckets.

    static void cache_collect_free(bucket_t *data, mask_t capacity)
    {
    #if CONFIG_USE_CACHE_LOCK
        cacheUpdateLock.assertLocked();
    #else
        runtimeLock.assertLocked();
    #endif
    
        if (PrintCaches) recordDeadCache(capacity);
    
        _garbage_make_room ();
        garbage_byte_size += cache_t::bytesForCapacity(capacity);
        garbage_refs[garbage_count++] = data;
        cache_collect(false);
    }
    

    验证得出:为什么之前的存储的sel都会不在了

    总结:

    1.occupied的值为buckets中存储的sel的个数
    2.mask值为4-1 = 3,8-1 = 7,16-1 = 15 ......
    3.当进行扩容的时候,之前的存储的sel都会并清空,所以找不到之前存储的sel
    4.存储的顺序是hash哈希算法计算出来的,所以里面存储的位置不是按顺序排列的

    Cooci 关于Cache_t原理分析图.png

    相关文章

      网友评论

        本文标题:四:类结构分析四:Cache_t

        本文链接:https://www.haomeiwen.com/subject/derciktx.html