如果计算同一个东西,可以思考一下批量处理。
计算日均、月均、年均,含缺测值,缺测天
求污染等级有点。。。。
import re
import sys
import numpy as np
import pandas as pd
xlsx = pd.read_excel('站点2018年1月1日-12月31日小时均值.xls','站点小时数据')
xlsx.head() #日期(年月日小时)和6项污染物
#算PM25和PM10的比值,将大于1的设为空
xlsx['bz']=xlsx['PM2.5'].div(xlsx['PM10'])
xlsx[xlsx['bz']>=1]
xlsx.loc[xlsx.bz >= 1, ['PM2.5','PM10','bz'] ]= np.nan
xlsx[xlsx['bz']>=1] #复查
#切片前先排序
xlsx = xlsx.sort_index(level=0)
#把年月日挑出来
xlsx['year']=pd.to_datetime(xlsx['时间']).dt.year
xlsx['month']=pd.to_datetime(xlsx['时间']).dt.month
xlsx['day']=pd.to_datetime(xlsx['时间']).dt.day
xlsx['hour']=pd.to_datetime(xlsx['时间']).dt.hour
xlsx.drop(['城市名称','区县名称','站点名称','时间'],axis=1,inplace=True)
xlsx.drop([0,], inplace=True) #第一行不在时间范围内,去掉
xlsx.head()
xlsx = xlsx.set_index([xlsx['year'],xlsx['month'],xlsx['day'],xlsx['hour']]) #设置多重索引
xlsx.drop(['year','month','day','hour'],axis=1,inplace=True)
xlsx.head()
# 算日均值
day_data = xlsx.mean(level=[0,1,2])
day_data.columns=["PM10","SO2","NO2","CO","O3","PM25","bz"]
day_data.to_csv('day_data.csv', index=True, sep=',')
#计算污染等级天数
pm11=day_data[["PM10","PM25",'bz']][(day_data.PM10<=50)]
pm11.count(level=0)
pm12=day_data[["PM10","PM25",'bz']][(day_data.PM10>50)&(day_data.PM10<=150)]
pm12.count(level=0)
pm13=day_data[["PM10","PM25",'bz']][(day_data.PM10>150)&(day_data.PM10<=250)]
pm13.count(level=0)
pm14=day_data[["PM10","PM25",'bz']][(day_data.PM10>250)&(day_data.PM10<=350)]
pm14.count(level=0)
pm15=day_data[["PM10","PM25",'bz']][(day_data.PM10>350)&(day_data.PM10<=420)]
pm15.count(level=0)
pm16=day_data[["PM10","PM25",'bz']][(day_data.PM10>420)]
pm16.count(level=0)
pm21=day_data[["PM10","PM25",'bz']][(day_data.PM25<=35)]
pm21.count(level=0)
pm22=day_data[["PM10","PM25",'bz']][(day_data.PM25>35)&(day_data.PM25<=75)]
pm22.count(level=0)
pm23=day_data[["PM10","PM25",'bz']][(day_data.PM25>75)&(day_data.PM25<=115)]
pm23.count(level=0)
pm24=day_data[["PM10","PM25",'bz']][(day_data.PM25>115)&(day_data.PM25<=150)]
pm24.count(level=0)
pm25=day_data[["PM10","PM25",'bz']][(day_data.PM25>150)&(day_data.PM25<=250)]
pm25.count(level=0)
pm26=day_data[["PM10","PM25",'bz']][(day_data.PM25>250)]
pm26.count(level=0)
#算月均
mon_data = xlsx.mean(level=[0,1])
mon_data.to_csv('月均.csv', index=True, sep=',')
mon_data
#算年均
year_data = xlsx.mean(level=0)
year_data.to_csv('年均.csv', index=False, sep=',')
year_data
#算小时平均
hour_data = xlsx.mean(level=[0,1,3])
hour_data.to_csv('小时平均.csv', index=True, sep=',')
hour_data
hour_spr=hour_data.loc[(slice(2018,2018),slice(3,5), slice(None)), :].mean(level=2)
hour_spr.to_csv('春季.csv', index=True, sep=',')
hour_spr
hour_sum=hour_data.loc[(slice(2018,2018),slice(6,8), slice(None)), :].mean(level=2)
hour_sum.to_csv('夏季.csv', index=True, sep=',')
hour_sum
hour_aut=hour_data.loc[(slice(2018,2018),slice(9,11), slice(None)), :].mean(level=2)
hour_aut.to_csv('秋季.csv', index=True, sep=',')
hour_aut
win1=hour_data.loc[(slice(2018,2018), slice(12,12), slice(None)), :].mean(level=2)
win2 = hour_data.loc[(slice(2019,2019), slice(1,2), slice(None)), :].sum(level=2)
win=(win1+win2)/3
win.to_csv('冬季.csv', index=True, sep=',')
计算臭氧滑动平均
import re
import sys
import numpy as np
import pandas as pd
S1 = pd.read_excel('190308.S1','Sheet1') #时间、臭氧
S1.head()
S1['year']=pd.to_datetime(S1['时间']).dt.year
S1['month']=pd.to_datetime(S1['时间']).dt.month
S1['day']=pd.to_datetime(S1['时间']).dt.day
S1['hour']=pd.to_datetime(S1['时间']).dt.hour
S1 = S1.set_index([S1['year'],S1['month'],S1['day'],S1['hour']])
S1.drop(['二氧化硫','PM10','时间','year','month','day','hour','二氧化氮','一氧化碳','PM25'],axis=1,inplace=True)
S1.head()
#初始滑动平均
O3_pre1=S1.rolling(window=8).mean()
#上移一位
O3_pre2=O3_pre1.shift(-1) #上调一位
#算日均最大8小时平均
O3_f=O3_pre2.loc[(slice(None), slice(None),slice(None),slice(7,23)), :].max(level=[0,1,2])
O3_f.to_csv('臭氧日最大8小时滑动平均.csv', index=True, sep=',')
O3_f[O3_f>160].count(level=1)
#算月均、年均
monave=O3_f.mean(level=[0,1])
monave.to_csv('臭氧8小时滑动平均月均.csv', index=True, sep=',')
monave
yearave=O3_f.mean(level=[0])
yearave.to_csv('臭氧8小时滑动平均年均.csv', index=True, sep=',')
yearave
Ospr=SO1.loc[(slice(2018,2018),slice(3,5), slice(None)), :].mean(level=0)
Ospr.to_csv('春季.csv', index=True, sep=',')
Osum=SO1.loc[(slice(2018,2018),slice(6,8), slice(None)), :].mean(level=0)
Osum.to_csv('夏季.csv', index=True, sep=',')
Oaut=SO1.loc[(slice(2018,2018),slice(9,11), slice(None)), :].mean(level=0)
Oaut.to_csv('秋季.csv', index=True, sep=',')
Oaut
网友评论