ChannelPipeline
1563778578642.png 1563778661420.png1563777726937.png首先一个pipeline对应一个channel,从方法列表上能看出,基本上pipeline的主要功能是维护其自身的双向链表的一个责任链。其二,是用来对外提供IO事件或IO处理,其内部最终还是会去调用节点的ChannelHandler,相当于就是handler的一个代理。
初始化
protected DefaultChannelPipeline(Channel channel) {
this.channel = ObjectUtil.checkNotNull(channel, "channel");
succeededFuture = new SucceededChannelFuture(channel, null);
voidPromise = new VoidChannelPromise(channel, true);
// 双向链表,有头有尾
tail = new TailContext(this);
head = new HeadContext(this);
head.next = tail;
tail.prev = head;
}
ChannelHandlerContext
1563777639800.png1563779627805.pngChannelSocket 和 ChannelPipeline 是一对一的关联关系,而 pipeline 内部的多个 Context 形成了链表,Context 只是对 Handler 的封装。
TailContext
1563779342046.png从tailcontext的继承体系来看,他只是作为入站的处理器来对待,作为pipeline的最后一环,来对IO事件做收尾工作,比如捕获异常啦,提醒有消息没有处理被丢弃什么的。
final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler {
TailContext(DefaultChannelPipeline pipeline) {
// inbound为true,outbound为false,说明tailContext主要用来处理READ,入站处理器
super(pipeline, null, TAIL_NAME, true, false);
// 设置该节点已经处理完毕
setAddComplete();
}
// 说明TailContext不光是个标记位,同时也是pipeline的处理节点
@Override
public ChannelHandler handler() {
return this;
}
...
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
// 当读取过程中有异常是,进行捕获
// An exceptionCaught() event was fired, and it reached at the tail of the // pipeline. It usually means the last handler in the pipeline did not handle the // exception."
onUnhandledInboundException(cause);
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
// 如果有消息进来,调用到这里,说明你需要检查你的pipeline配置,因为没有对应的节点来处理读取事件
// 调用到这里,说明该消息即将会被丢弃掉
// Discarded inbound message {} that reached at the tail of the pipeline. " +
// "Please check your pipeline configuration.
onUnhandledInboundMessage(msg);
}
}
HeadContext
1563779399734.png而HeadContext的继承体系看起来明显不同,更全面,负责的工作更多,基本上是全才,入站出战全搞定,不难理解。这里是pipeline的起始点,当然不一样。比如读写,连接,bind什么的,必定都在tail前都执行完了,当然不用流转到tail了。其二,还有一个很重要的职责是负责将收到的IO事件不条件的往下传播。
// 而HeadContext的工作则繁重得多,不管是读写,连接,绑定等等,还要负责将事件向tail的方向进行传播
final class HeadContext extends AbstractChannelHandlerContext
implements ChannelOutboundHandler, ChannelInboundHandler {
private final Unsafe unsafe;
HeadContext(DefaultChannelPipeline pipeline) {
// inbound为false,outbound为true,说明HeadContext主要用来处理write,出站处理器
super(pipeline, null, HEAD_NAME, false, true);
// 而handler的工作最终是需要unsafe来托管
unsafe = pipeline.channel().unsafe();
setAddComplete();
}
...
}
ChannelHandler
1563779797126.png而pipeline上真正对事件进行处理的就是ChannelHandler,可以看到ChannelInboundHandler 主要是处理IO的事件的,而ChannelOutboundHandler主要处理
添加
public final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {
if (handlers == null) {
throw new NullPointerException("handlers");
}
// 首先需要注意的是,addLast一次可以加入多个handler
for (ChannelHandler h: handlers) {
if (h == null) {
break;
}
addLast(executor, null, h);
}
return this;
}
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
final AbstractChannelHandlerContext newCtx;
synchronized (this) {
// 判断重复添加
checkMultiplicity(handler);
// 创建context节点,主要是绑定ctx和handler
newCtx = newContext(group, filterName(name, handler), handler);
addLast0(newCtx);
// If the registered is false it means that the channel was not registered on an eventloop yet.
// In this case we add the context to the pipeline and add a task that will call
// ChannelHandler.handlerAdded(...) once the channel is registered.
if (!registered) {
newCtx.setAddPending();
callHandlerCallbackLater(newCtx, true);
return this;
}
EventExecutor executor = newCtx.executor();
if (!executor.inEventLoop()) {
newCtx.setAddPending();
executor.execute(new Runnable() {
@Override
public void run() {
callHandlerAdded0(newCtx);
}
});
return this;
}
}
callHandlerAdded0(newCtx);
return this;
}
判断重复添加
private static void checkMultiplicity(ChannelHandler handler) {
if (handler instanceof ChannelHandlerAdapter) {
ChannelHandlerAdapter h = (ChannelHandlerAdapter) handler;
// 如果你向一个handler实例要多个channel共享,那么你需要标注Sharable。
// 否则,如果已经添加到了一个channel,不能再重复添加到其他channel
if (!h.isSharable() && h.added) {
throw new ChannelPipelineException(
h.getClass().getName() +
" is not a @Sharable handler, so can't be added or removed multiple times.");
}
h.added = true;
}
}
创建节点
private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {
return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler);
}
DefaultChannelHandlerContext(
DefaultChannelPipeline pipeline, EventExecutor executor, String name, ChannelHandler handler) {
// 这里会判断当前的handler是inbound还是outbound
super(pipeline, executor, name, isInbound(handler), isOutbound(handler));
if (handler == null) {
throw new NullPointerException("handler");
}
this.handler = handler;
}
private static boolean isInbound(ChannelHandler handler) {
return handler instanceof ChannelInboundHandler;
}
private static boolean isOutbound(ChannelHandler handler) {
return handler instanceof ChannelOutboundHandler;
}
添加至列表
private void addLast0(AbstractChannelHandlerContext newCtx) {
AbstractChannelHandlerContext prev = tail.prev;
newCtx.prev = prev;
newCtx.next = tail;
prev.next = newCtx;
tail.prev = newCtx;
}
回调完成事件
private void callHandlerAdded0(final AbstractChannelHandlerContext ctx) {
try {
// 而在初始化的时候,这里会调用到ChannelInitializer的handlerAdded方法
ctx.handler().handlerAdded(ctx);
ctx.setAddComplete();
} catch (Throwable t) {
...
}
}
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
if (ctx.channel().isRegistered()) {
// 而最终会调回到用户定义的initChannel方法,对pipeline进行初始化
initChannel(ctx);
}
}
private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
if (initMap.putIfAbsent(ctx, Boolean.TRUE) == null) { // Guard against re-entrance.
try {
// 而最终会调回到用户定义的initChannel方法,对pipeline进行初始化
initChannel((C) ctx.channel());
} catch (Throwable cause) {
...
} finally {
// 而上面执行完pipeline配置后,会移除ChannelInitializer,毕竟配置设置一次就好。
remove(ctx);
}
return true;
}
return false;
}
protected void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline pipeline = ch.pipeline();
// 配置pipeline
pipeline.addLast(new HttpServerCodec());
pipeline.addLast(new ChunkedWriteHandler());
pipeline.addLast(new HttpObjectAggregator(8192));
pipeline.addLast(new WebSocketServerProtocolHandler("/ws"));
pipeline.addLast(new TextWebSocketFrameHandler());
}
删除
场景
假如需要在首次连接的时候做一次权限校验,通过,则以后畅通无阻,失败,则寸步难行。那么很容易想到,我们可以add一个AuthHandler,然后通过后,再remove这个handler。免得每次都需要做权限验证。
public final ChannelPipeline remove(ChannelHandler handler) {
remove(getContextOrDie(handler));
return this;
}
查找节点
private AbstractChannelHandlerContext getContextOrDie(ChannelHandler handler) {
// 去ctx查找handler,如果找不到报NoSuchElementException
AbstractChannelHandlerContext ctx = (AbstractChannelHandlerContext) context(handler);
if (ctx == null) {
throw new NoSuchElementException(handler.getClass().getName());
} else {
return ctx;
}
}
public final ChannelHandlerContext context(ChannelHandler handler) {
if (handler == null) {
throw new NullPointerException("handler");
}
// 从head开始往后查找传入的handler
AbstractChannelHandlerContext ctx = head.next;
for (;;) {
if (ctx == null) {
return null;
}
if (ctx.handler() == handler) {
return ctx;
}
ctx = ctx.next;
}
}
链表删除
private AbstractChannelHandlerContext remove(final AbstractChannelHandlerContext ctx) {
// head和tail不能删除
assert ctx != head && ctx != tail;
synchronized (this) {
remove0(ctx);
// If the registered is false it means that the channel was not registered on an eventloop yet.
// In this case we remove the context from the pipeline and add a task that will call
// ChannelHandler.handlerRemoved(...) once the channel is registered.
if (!registered) {
callHandlerCallbackLater(ctx, false);
return ctx;
}
EventExecutor executor = ctx.executor();
if (!executor.inEventLoop()) {
executor.execute(new Runnable() {
@Override
public void run() {
callHandlerRemoved0(ctx);
}
});
return ctx;
}
}
callHandlerRemoved0(ctx);
return ctx;
}
// 链表删除
private static void remove0(AbstractChannelHandlerContext ctx) {
AbstractChannelHandlerContext prev = ctx.prev;
AbstractChannelHandlerContext next = ctx.next;
prev.next = next;
next.prev = prev;
}
回调删除事件
private void callHandlerRemoved0(final AbstractChannelHandlerContext ctx) {
// Notify the complete removal.
try {
try {
// 回调该handler的handlerRemoved方法
ctx.handler().handlerRemoved(ctx);
} finally {
// 设置该handler绑定的ctx的状态为REMOVE_COMPLETE
ctx.setRemoved();
}
} catch (Throwable t) {
// 如果有异常,传递ExceptionCaught事件
fireExceptionCaught(new ChannelPipelineException(
ctx.handler().getClass().getName() + ".handlerRemoved() has thrown an exception.", t));
}
}
inBound事件传播
imghead节点
public final ChannelPipeline fireChannelRead(Object msg) {
// 从head开始,往后传播,调用head的next的channelRead
AbstractChannelHandlerContext.invokeChannelRead(head, msg);
return this;
}
当前节点
public ChannelHandlerContext fireChannelRead(final Object msg) {
// 调用下一个节点的channelRead
invokeChannelRead(findContextInbound(), msg);
return this;
}
// 获取当前节点的下一个节点
private AbstractChannelHandlerContext findContextInbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.next;
// 传播的下一个handler必须是inbound
} while (!ctx.inbound);
return ctx;
}
tail节点
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
// 如果前面消息传播过程中没人节点处理完消息并返回,那么这里提醒下该消息会被丢弃
onUnhandledInboundMessage(msg);
}
节点筛选
截获事件并往下传播的过程需要用户自己来触发,并不会自动往下传播,那么inBound事件需要筛选出下一个是否是inBound流程节点,怎么判断呢?其实在前面创建节点的部分,已经提前做好了判断。
SimpleChannelInboundHandler
1563787372972.png首先,使用这个的好处是处理message的时候可以直接使用你指定的类型。而不用转来转去。另外它可以自动释放你在pipeline中传递的资源。比如ByteBuf。
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
boolean release = true;
try {
// 这里主要是验证msg的类型是否是你指定的泛型类型
if (acceptInboundMessage(msg)) {
@SuppressWarnings("unchecked")
// 强转
I imsg = (I) msg;
// 调用用户自定义的channelRead0,并会将message传进去,你可以选择是否要释放资源
channelRead0(ctx, imsg);
} else {
// 如果不是指定的类型,直接传播给下一个handler
release = false;
ctx.fireChannelRead(msg);
}
} finally {
// 最终会释放掉message持有的资源
if (autoRelease && release) {
ReferenceCountUtil.release(msg);
}
}
}
outBound事件传播
imgtail节点
public final ChannelFuture write(Object msg) {
return tail.write(msg);
}
当前节点
private void write(Object msg, boolean flush, ChannelPromise promise) {
// 找到当前节点的prev前一个节点,往前传播
AbstractChannelHandlerContext next = findContextOutbound();
final Object m = pipeline.touch(msg, next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
if (flush) {
next.invokeWriteAndFlush(m, promise);
} else {
next.invokeWrite(m, promise);
}
} else {
AbstractWriteTask task;
if (flush) {
task = WriteAndFlushTask.newInstance(next, m, promise);
} else {
task = WriteTask.newInstance(next, m, promise);
}
safeExecute(executor, task, promise, m);
}
}
head节点
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
// 最终由unsafe来托管进行write,且不再继续传播事件
unsafe.write(msg, promise);
}
节点筛选
// 这里说明直接调用ctx,也就是节点的write的时候,会找当前节点的prev进行传播
// 而调用ctx.channel()的write,会直接从tail开始找
private AbstractChannelHandlerContext findContextOutbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.prev;
// 必须是outbound类型的节点,跟inbound同理
} while (!ctx.outbound);
return ctx;
}
异常事件传播
触发
private void invokeChannelRead(Object msg) {
if (invokeHandler()) {
try {
((ChannelInboundHandler) handler()).channelRead(this, msg);
} catch (Throwable t) {
// 当处理channelRead的时候报错,会触发异常事件传播
notifyHandlerException(t);
}
} else {
fireChannelRead(msg);
}
}
private void notifyHandlerException(Throwable cause) {
// 是否用户在自定义的handler中处理异常失败,被再次抛出?
// 那么说明该异常事件不可控
if (inExceptionCaught(cause)) {
if (logger.isWarnEnabled()) {
logger.warn(
"An exception was thrown by a user handler " +
"while handling an exceptionCaught event", cause);
}
return;
}
invokeExceptionCaught(cause);
}
当前节点
private void invokeExceptionCaught(final Throwable cause) {
if (invokeHandler()) {
try {
// 调用当前handler的exceptionCaught方法
handler().exceptionCaught方法(this, cause);
} catch (Throwable error) {
...
}
} else {
fireExceptionCaught(cause);
}
}
public ChannelHandlerContext fireExceptionCaught(final Throwable cause) {
// 异常事件并不像inbound或outbound一样去从head或从tail开始,按照各自的顺序去查找同类的节点去触发
// 异常只会按照节点add的时候的顺序来往下传播,并不case是inbound还是outbound
invokeExceptionCaught(next, cause);
return this;
}
static void invokeExceptionCaught(final AbstractChannelHandlerContext next, final Throwable cause) {
ObjectUtil.checkNotNull(cause, "cause");
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
// 调用handler的exceptionCaught方法
next.invokeExceptionCaught(cause);
} else {
try {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeExceptionCaught(cause);
}
});
} catch (Throwable t) {
...
}
}
}
网友评论