背包问题

作者: 小王子哈 | 来源:发表于2017-09-12 23:20 被阅读9次

一种双核CPU的两个核能够同时的处理任务,现在有n个已知数据量的任务需要交给CPU处理,假设已知CPU的每个核1秒可以处理1kb,每个核同时只能处理一项任务。n个任务可以按照任意顺序放入CPU进行处理,现在需要设计一个方案让CPU处理完这批任务所需的时间最少,求这个最小的时间。

输入描述:

输入包括两行:
第一行为整数n(1 ≤ n ≤ 50)
第二行为n个整数length[i](1024 ≤ length[i] ≤ 4194304),表示每个任务的长度为length[i]kb,每个数均为1024的倍数。

输出描述:

输出一个整数,表示最少需要处理的时间


import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while (sc.hasNext()) {
            int n = sc.nextInt();
            int[] arr = new int[n];
            int sum = 0;
            for (int i = 0; i < arr.length; i ++) {
                arr[i] = sc.nextInt() >> 10;
                sum += arr[i];
            }
            // dp[j]表示在容量为j的情况下可存放的重量
            // 如果不放arr[i]重量为dp[j],如果放arr[i]重量为dp[j-arr[i]]+arr[i];
            int[] dp = new int[sum / 2 + 1];
            for (int i = 0; i < n; i ++) {
                for (int j = sum / 2; j >= arr[i]; j --) {
                    dp[j] = Math.max(dp[j], dp[j - arr[i]] + arr[i]);
                }
            }
            System.out.println(Math.max(dp[sum / 2], sum - dp[sum / 2]) << 10);
        }
    }
}

解析:

核心代码就是以上16,17,18三行,实际就用了01背包空间优化的策略。 思路:根据题目意思,两个CPU平摊任务,然后输出执行这些任务的最小时间,最理想的情况是,每个CPU执行的任务占所有任务的总时间的一半(wholeTime/2),这样两个CPU执行的时间差就是最小的,输出的结果就是最小的,但任务只能由一个CPU独立完成,所以单个任务的执行时间已经是不可分割的了。解决的办法就是尽量让单个CPU执行的任务总时间接近wholeTime/2,越接近这个值,则这个CPU和另一个CPU的执行时间差就必定越小。也就能得到最优解,所以只要讨论一个CPU即可,而且希望它的执行时间越接近wholeTime/2就越好,这就与01背包问题挂上钩了,问题转化为限制背包的容量为wholeTime/2,每个任务转化为每个物品,物品的价值和大小都是任务的执行时间,这样一来,只要求得背包总价值最大即可得到原问题的答案了。

完成任务有个总时间,2个cpu 执行 最快的 就是 一个人执行 一半,
// dp[j]表示在容量为j的情况下可存放的重量
// 如果不放arr[i]重量为dp[j],如果放arr[i]重量为dp[j-arr[i]]+arr[i];
任务的value : 1 3 3 3 7 ; 任务数量为 1 1 1 1 ;单个cpu 最多完成为: sum/2=8;单个CPU 分别循环 1 ,2,3,4 个任务; 以4 为例 最大可执行 4个任务;dp[8], 如果把4 任务放入则 ,d[j]=arr[4]+ 剩下的能放置的质量;d[8]=arr[4]+d[8-arr[4]] 第四个任务的value ;// 循环后会得到最大值 ;

假定

背包的最大容量为W,N件物品,每件物品都有自己的价值和重量,将物品放入背包中使得背包内物品的总价值最大。

Paste_Image.png
  1. public class sf {  
  2.   
  3.     public static void main(String[] args) {  
  4.         // TODO Auto-generated method stub  
  5.         int[] weight = {3,5,2,6,4}; //物品重量  
  6.         int[] val = {4,4,3,5,3}; //物品价值  
  7.         int m = 12; //背包容量  
  8.         int n = val.length; //物品个数  
  9.           
  10.         int[] f = new int[m+1];  
  11.         for(int i=0;i<f.length;i++){     //不必装满则初始化为0  
  12.             f[i] = 0;  
  13.         }  
  14.         for(int i=0;i<n;i++){  
  15.             for(int j=f.length-1;j>=weight[i];j--){  
  16.                 f[j] = Math.max(f[j], f[j-weight[i]]+val[i]);  
  17.             }  
  18.         }  
  19.         for(int i=0;i<f.length;i++){  
  20.             System.out.print(f[i]+" ");  
  21.         }  
  22.         System.out.println();  
  23.         System.out.println("最大价值为"+f[f.length-1]);  
  24.     }  
  25. }  

相关文章

  • 背包问题(完全背包)

    动态规划合集: 1.矩阵链乘法2.投资组合问题3.完全背包问题4.01背包问题5.最长公共子序列 例题3——背包问...

  • Algorithm进阶计划 -- 动态规划(下)

    经典动态规划背包问题最长子序列问题 1. 背包问题 1.1 0-1 背包问题 0-1 背包问题,描述如下: 上面...

  • 背包问题

    0-1背包问题 问题 n个物体,它们各自有重量和价值,给定一个有容量的背包,如何让背包里装入的物体价值总和最大? ...

  • 背包问题

    问题描述 假如有一个能装下4磅的背包,如何从下列商品列表中选择商品填充背包,使价值达到最大: 动态规划 要解决背包...

  • 背包问题

    (1)0-1背包容量为10的背包,有5种物品,每种物品只有一个,其重量分别为5,4,3,2,1,其价值分别为1,2...

  • 背包问题

  • 背包问题

    01背包(物品只有一个) 有N件物品和一个容量为V的背包。第i建物品的费用是w[i],价值是v[i]。求解将哪些物...

  • 背包问题

    1. 01背包 状态说明:背包体积为v,物品个数为n,f[n,v]表示前n件物品加入背包的最大价值。c_i,w_i...

  • 背包问题

    01背包 优化空间复杂度,变为一维; 外循环依然是n从1->N, 注意内循环 v是从V->0,为什么内循环是V->...

  • 背包问题

    介绍 学习动态规划算法的经典例题。动态规划算法一般有3个特征1、最优化原理:最优解所包含的子问题的解也是最优的。2...

网友评论

    本文标题:背包问题

    本文链接:https://www.haomeiwen.com/subject/dgihsxtx.html