美文网首页
Backpack III

Backpack III

作者: BLUE_fdf9 | 来源:发表于2018-09-28 02:35 被阅读0次

    题目

    1. Backpack III
      Given n kind of items with size Ai and value Vi( each item has an infinite number available) and a backpack with size m. What's the maximum value can you put into the backpack?

    Example
    Given 4 items with size [2, 3, 5, 7] and value [1, 5, 2, 4], and a backpack with size 10. The maximum value is 15.

    Notice
    You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.

    答案

    public class Solution {
        /**
         * @param A: an integer array
         * @param V: an integer array
         * @param m: An integer
         * @return: an array
         */
        public int backPackIII(int[] A, int[] V, int m) {
            int n = A.length;
            int[][] f = new int[n + 1][m + 1];
    
            
            for(int i = 1; i <= n; i++) {
                for(int j = 0; j <= m; j++) {
                    for(int k = 0; k * A[i - 1] <= j; k++) {
                        int t = f[i - 1][j - k * A[i - 1]] + k * V[i - 1];
                        f[i][j] = Math.max(f[i][j], t);   
                    }
                }
            }
            
            return f[n][m];
        }
    }
    

    时间空间优化

    public class Solution {
        /**
         * @param A: an integer array
         * @param V: an integer array
         * @param m: An integer
         * @return: an array
         */
        public int backPackIII(int[] A, int[] V, int m) {
            int n = A.length;
            int[][] f = new int[n + 1][m + 1];
    
            
            for(int i = 1; i <= n; i++) {
                for(int j = 0; j <= m; j++) {
                    f[i][j] = f[i - 1][j];
                    if(j - A[i - 1] >= 0)
                        f[i][j] = Math.max(f[i][j], f[i][j - A[i - 1]] + V[i - 1]);
                }
            }
            
            return f[n][m];
        }
    }
    

    相关文章

      网友评论

          本文标题:Backpack III

          本文链接:https://www.haomeiwen.com/subject/dhquoftx.html