美文网首页
方法论文

方法论文

作者: zhaoqike082400 | 来源:发表于2017-11-13 09:53 被阅读0次

    EDSR(enhanced deep super-resolution network)

    MDSR(multi-scaledeep super-resolution system)

    Enhanced Deep Residual Networks for Single Image Super-Resolution cvprw2017

    https://github.com/LimBee/NTIRE2017

    srresnet的网络结构简化版

    VDSR

    Accurate Image Super-Resolution Using Very Deep Convolutional Networks

    https://github.com/Jongchan/tensorflow-vdsr

    https://github.com/twtygqyy/pytorch-vdsr

    可能都不是官方的git

    A+

    RFL

    SelfEx

    SRCNN

    Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016

    http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

    DRRN(Deep Recursive Residual Network)

    Image Super-Resolution via Deep RecursiveResidual NetworkCVPR2017

    https://github.com/tyshiwo/DRRN_CVPR17

    MemNet

    MemNet: A Persistent Memory Network for Image RestorationICCV2017

    DRCN

    Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016.

    RED-Net   RED10   RED20   RED30

    Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections  NIPS2016

    compared with SRCNN [7], NBSRF [25], CSCN [30], CSC [10], TSE [13] and ARFL+ [26]

    NBSRF

    Naive bayes super-resolution forest. In Proc. IEEE Int. Conf. Comp. Vis.2015

    https://perezpellitero.github.io/

    IRCNN

    Learning Deep CNN Denoiser Prior for Image Restoration(CVPR2017)

    https://github.com/cszn/ircnn

    CSCN(cascade of sparse coding based network)

    Deep networks for image super-resolution with sparse prior. In Proc. ICCV 2015.

    http://www.ifp.illinois.edu/~dingliu2/iccv15/

    CSC(Convolutional Sparse Coding)

    Convolutional Sparse Coding for Image Super-resolution ICCV2015

    TSE(Transformed Self-Exemplars)

    Single Image Super-resolution from Transformed Self-Exemplars  CVPR2015

    ARFL+

    Fast and Accurate Image Upscaling with Super-Resolution ForestsCVPR2015

    相关文章

      网友评论

          本文标题:方法论文

          本文链接:https://www.haomeiwen.com/subject/dijimxtx.html