美文网首页
Java 算法 - Guess Number Higher o

Java 算法 - Guess Number Higher o

作者: 琼珶和予 | 来源:发表于2019-12-09 23:54 被阅读0次

      今天楼主在LeetCode上面刷到了一道动态规划的题,感觉有必要的记录下来。

    题意

    We are playing the Guess Game. The game is as follows:
    
    I pick a number from 1 to n. You have to guess which number I picked.
    
    Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.
    
    However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when 
    you guess the number I picked.
    

    样例

    n = 10, I pick 8.
    
    First round:  You guess 5, I tell you that it's higher. You pay $5.
    Second round: You guess 7, I tell you that it's higher. You pay $7.
    Third round:  You guess 9, I tell you that it's lower. You pay $9.
    
    Game over. 8 is the number I picked.
    
    You end up paying $5 + $7 + $9 = $21.
    

    补充

    Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.
    

    1. 解题思路

      初次看到这道题时,我一脸懵逼,后面实在是想不通这道题的意思,参考了大佬的代码并且加以理解。
      我们先来理解一下这道题的意思。题干说给一个数字n,求得最小的支出。我们可以从博弈论的方向来看待这道题,博弈的对方肯定会想法设法让我们最终的结果最大,为什么这么说呢?如果对方不给我们创造阻碍的,那最小值岂不是永远是0(我们选择啥,对方就设置啥)。所以得出如下结论:
      当我们选择m,如果m左边或者右边还有未选择数字,那么博弈方设置的数字肯定是左边和右边的最大结果。抽象成代码的话,假设dp[n + 1][n + 1]数组,其中dp[i][j]表示从i ~ j的最小值,那么我们可以得出动态规划方程:dp[i][j] = Math.min(dp[i][j], select + Math.max(dp[i][select - 1], dp[select + 1][j])),其中select的取值范围是:[i, j]。
      如上分析,我们得出从两种方法来解决这个问题:动态规划和分治法。

    2. 动态规划

        public int getMoneyAmount(int n) {
            int dp[][] = new int[n + 1][n + 1];
            for (int right = 1; right <= n; right++) {
                for (int left = right - 1; left >= 1; left--) {
                    dp[left][right] = Integer.MAX_VALUE;
                    for (int select = right; select >= left; select--) {
                        if (select == left) {
                            dp[left][right] = Math.min(dp[left][right], select + dp[select + 1][right]);
                        } else if (select == right) {
                            dp[left][right] = Math.min(dp[left][right], select + dp[left][right - 1]);
                        } else {
                            dp[left][right] = Math.min(dp[left][right], select + Math.max(dp[left][select - 1], dp[select + 1][right]));
                        }
                    }
                }
            }
            return dp[1][n];
        }
    

    3. 分支法

        private int memo[][];
    
        public int getMoneyAmount(int n) {
            memo = new int[n + 1][n + 1];
            return minCost(1, n);
        }
    
        private int minCost(int start, int end) {
            if (start >= end) {
                return 0;
            }
            if (memo[start][end] != 0) {
                return memo[start][end];
            }
            int min = Integer.MAX_VALUE;
            for (int i = start; i <= end; i++) {
                min = Math.min(min, i + Math.max(minCost(start, i - 1), minCost(i + 1, end)));
            }
            memo[start][end] = min;
            return min;
        }
    

    相关文章

      网友评论

          本文标题:Java 算法 - Guess Number Higher o

          本文链接:https://www.haomeiwen.com/subject/diqwgctx.html