美文网首页
Python喊你吃饭了!

Python喊你吃饭了!

作者: 919b0c54458f | 来源:发表于2019-01-25 10:40 被阅读21次

    去除重复数据

    DataFrame中出现重复行有多种原因。下面就是一个例子:

    import pandas as pd

    import numpy as np

    data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],

    'k2': [1, 1, 2, 3, 3, 4, 4]})

    data

    k1k20one11two12one23two34one35two46two4

    DataFrame的duplicated 方法返回一个布尔型Series ,表示各行是否是重复行(前面出现过的行):

    data.duplicated()

    0 False

    1 False

    2 False

    3 False

    4 False

    5 False

    6 True

    dtype: bool

    还有一个与此相关的drop_duplicates方法,它会返回一个DataFrame,重复的数组会标为False:

    data.drop_duplicates()

    k1k20one11two12one23two34one35two4

    这两个方法默认会判断全部列,你也可以指定部分列进行重复项判断。假设我们还有一列值,且只希望根据k1列过滤重复项:

    data['v1'] = range(7)

    data

    k1k2v10one101two112one223two334one345two456two46

    data.drop_duplicates(['k1']) ### 只保留最先出现的

    k1k2v10one101two11

    duplicated 和drop_duplicates默认保留的是第一个出现的值组合。传入keep='last' 则保留最后一个:

    data.drop_duplicates(['k1'], keep='last')

    k1k2v14one346two46

    data.drop_duplicates(['k1','k2'], keep='first')

    k1k2v10one101two112one223two334one345two45

    data.drop_duplicates(['k1','k2'], keep='last')

    k1k2v10one101two112one223two334one346two46

    利用函数或映射进行数据转换

    对于许多数据集,你可能希望根据数组、Series 或DataFrame列中的值来实现转换工作。我们来看看下面这组有关肉类的数据:

    data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon',

    'Pastrami', 'corned beef', 'Bacon',

    'pastrami', 'honey ham', 'nova lox'],

    'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

    data

    foodounces0bacon4.01pulled pork3.02bacon12.03Pastrami6.04corned beef7.55Bacon8.06pastrami3.07honey ham5.08nova lox6.0

    假设你想要添加一列表示该肉类食物来源的动物类型。我们先编写一个不同肉类到动物的映射:

    meat_to_animal = {

    'bacon': 'pig',

    'pulled pork': 'pig',

    'pastrami': 'cow',

    'corned beef': 'cow',

    'honey ham': 'pig',

    'nova lox': 'salmon'

    }

    meat_to_animal

    {'bacon': 'pig',

    'pulled pork': 'pig',

    'pastrami': 'cow',

    'corned beef': 'cow',

    'honey ham': 'pig',

    'nova lox': 'salmon'}

    Series 的map 方法可以接受一个函数或含有映射关系的字典型对象,但是这里有一个小问题,即有些肉类的首字母大写了,而另一些则没有。因此,我们还需要使用Series 的str.lower 方法,将各个值转换为小写:

    data['animal']=data.food.str.lower().map(meat_to_animal)

    data

    foodouncesanimal0bacon4.0pig1pulled

    pork3.0pig2bacon12.0pig3Pastrami6.0cow4corned

    beef7.5cow5Bacon8.0pig6pastrami3.0cow7honey ham5.0pig8nova lox6.0salmon

    我们也可以传入一个能够完成全部这些工作的函数:

    data.food.map(lambda x: meat_to_animal[x.lower()]) ### 字典后面用[],里面填写的为键名

    0 pig

    1 pig

    2 pig

    3 cow

    4 cow

    5 pig

    6 cow

    7 pig

    8 salmon

    Name: food, dtype: object

    使用map 是一种实现元素级转换以及其他数据清理工作的便捷方式。####看到map 想到的是不是R里面的apply

    替换值

    利用fillna方法填充缺失数据可以看做值替换的一种特殊情况。前面已经看到,map 可用于修改对象的数据子集,而replace则提供了一种实现该功能的更简单、更灵活的方式。我们来看看下面这个Series :

    data2=pd.Series([1., -999., 2., -999., -1000., 3.])

    data2

    0 1.0

    1 -999.0

    2 2.0

    3 -999.0

    4 -1000.0

    5 3.0

    dtype: float64

    -999这个值可能是一个表示缺失数据的标记值。要将其替换为pandas能够理解的NA值,我们可以利用replace来产生一个新的Series (除非传入inplace=True ):

    data2.replace(-999,np.nan)

    0 1.0

    1 NaN

    2 2.0

    3 NaN

    4 -1000.0

    5 3.0

    dtype: float64

    如果你希望一次性替换多个值,可以传入一个由待替换值组成的列表以及一个替换值::

    data2.replace([-999,-1000],np.nan)

    0 1.0

    1 NaN

    2 2.0

    3 NaN

    4 NaN

    5 3.0

    dtype: float64

    data2.replace([-999,-1000],[np.nan,0])

    0 1.0

    1 NaN

    2 2.0

    3 NaN

    4 0.0

    5 3.0

    dtype: float64

    传入的参数也可以是字典:

    data2.replace({-999:np.nan,-1000:0})

    0 1.0

    1 NaN

    2 2.0

    3 NaN

    4 0.0

    5 3.0

    dtype: float64

    笔记:data.replace方法与data.str.replace 不同,后者做的是字符串的元素级替换。我们会在后面学习Series 的字符串方法。

    重命名轴索引

    跟Series 中的值一样,轴标签也可以通过函数或映射进行转换,从而得到一个新的不同标签的对象。轴还可以被就地修改,而无需新建一个数据结构。

    接下来看看下面这个简单的例子:

    data = pd.DataFrame(np.arange(12).reshape((3, 4)),

    index=['Ohio', 'Colorado', 'New York'],

    columns=['one', 'two', 'three', 'four'])

    data

    进群:960410445 获取更多项目源码!

    onetwothreefourOhio0123Colorado4567New York891011

    data.index.str.upper()

    Index(['OHIO', 'COLORADO', 'NEW YORK'], dtype='object')

    transf=lambda x:x[:3].upper()

    data.index.map(transf)

    Index(['OHI', 'COL', 'NEW'], dtype='object')

    你可以将其赋值给index ,这样就可以对DataFrame进行就地修改:

    data.index=data.index.map(transf)

    data

    onetwothreefourOHI0123COL4567NEW891011

    如果想要创建数据集的转换版(而不是修改原始数据),比较实用的方法是rename :

    data.rename(columns=str.upper) ##可以看到直接用str.upper就可以

    ONETWOTHREEFOUROHI0123COL4567NEW891011

    data.rename(index=str.lower,columns=str.upper)

    ONETWOTHREEFOURohi0123col4567new891011

    特别说明一下,rename 可以结合字典型对象实现对部分轴标签的更新:

    data.rename(index={'COL':'col'},columns={'three':'THREE'})

    onetwoTHREEfourOHI0123col4567NEW891011

    rename 可以实现复制DataFrame并对其索引和列标签进行赋值。如果希望就地修改某个数据集,传入inplace=True 即可:

    data.rename(index={'COL':'col'},columns={'three':'THREE'},inplace=True)

    data

    onetwoTHREEfourOHI0123col4567NEW891011

    离散化和面元划分

    为了便于分析,连续数据常常被离散化或拆分为“面元”(bin)。假设有一组人员数据,而你希望将它们划分为不同的年龄组:

    ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]

    接下来将这些数据划分为“18 到25”、“26 到35”、“35 到60”以及“60 以上”几个面元。要实现该功能,你需要使用pandas的cut函数:

    bins = [18, 25, 35, 60, 100]

    cats=pd.cut(ages,bins)

    cats

    [(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]

    Length: 12

    Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]

    pandas返回的是一个特殊的Categorical对象。结果展示了pandas.cut 划分的面元。你可以将其看做一组表示面元名称的字符串。它的底层含有一个表示不同分类名称的类型数组,以及一个codes 属性中的年龄数据的标签:

    cats.codes

    array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)

    cats.categories

    IntervalIndex([(18, 25], (25, 35], (35, 60], (60, 100]]

    closed='right',

    dtype='interval[int64]')

    pd.value_counts(cats)

    (18, 25] 5

    (35, 60] 3

    (25, 35] 3

    (60, 100] 1

    dtype: int64

    pd.value_counts(cats) 是pandas.cut 结果的面元计数.跟“区间”的数学符号一样,圆括号表示开端,而方括号则表示闭端(包括)。哪边是闭端可以通过right=False 进行修改:

    pd.cut(ages, [18, 26, 36, 61, 100], right=False)

    [[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)]

    Length: 12

    Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]

    你可以通过传递一个列表或数组到labels ,设置自己的面元名称:

    group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']

    pd.cut(ages, [18, 26, 36, 61, 100], right=False,labels=group_names)

    [Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]

    Length: 12

    Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]

    如果向cut传入的是面元的数量而不是确切的面元边界,则它会根据数据的最小值和最大值计算等长面元。下面这个例子中,我们将一些均匀分布的数据分成四组:

    data = np.random.rand(20)

    data

    array([0.80223105, 0.88137599, 0.97961241, 0.920102 , 0.57567918,

    0.72476966, 0.76192477, 0.75227536, 0.42585703, 0.3250243 ,

    0.71434115, 0.6449239 , 0.73370247, 0.46096013, 0.73906558,

    0.76717047, 0.81297268, 0.02281176, 0.3664884 , 0.07191769])

    pd.cut(data,6,precision=1)

    [(0.7, 0.8], (0.8, 1.0], (0.8, 1.0], (0.8, 1.0], (0.5, 0.7], ..., (0.7, 0.8], (0.7, 0.8], (0.02, 0.2], (0.3, 0.5], (0.02, 0.2]]

    Length: 20

    Categories (6, interval[float64]): [(0.02, 0.2] < (0.2, 0.3] < (0.3, 0.5] < (0.5, 0.7] < (0.7, 0.8] < (0.8, 1.0]]

    选项precision=1,限定小数只有1位。qcut

    是一个非常类似于cut的函数,它可以根据样本分位数对数据进行面元划分。根据数据的分布情况,cut可能无法使各个面元中含有相同数量的数据点。而qcut

    由于使用的是样本分位数,因此可以得到大小基本相等的面元:

    data = np.random.randn(1000) # 正太分布

    cats = pd.qcut(data,3)

    cats

    [(-0.446, 0.386], (0.386, 3.875], (0.386, 3.875], (-2.834, -0.446], (0.386, 3.875], ..., (0.386, 3.875], (0.386, 3.875], (-2.834, -0.446], (-0.446, 0.386], (0.386, 3.875]]

    Length: 1000

    Categories (3, interval[float64]): [(-2.834, -0.446] < (-0.446, 0.386] < (0.386, 3.875]]

    pd.value_counts(cats)

    (-2.834, -0.446] 334

    (0.386, 3.875] 333

    (-0.446, 0.386] 333

    dtype: int64

    与cut类似,你也可以传递自定义的分位数(0到1之间的数值,包含端点):

    cat=pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])

    pd.value_counts(cat,sort=False)

    (-2.834, -1.35] 100

    (-1.35, -0.0784] 400

    (-0.0784, 1.248] 400

    (1.248, 3.875] 100

    相关文章

      网友评论

          本文标题:Python喊你吃饭了!

          本文链接:https://www.haomeiwen.com/subject/djhmjqtx.html