美文网首页
Python喊你吃饭了!

Python喊你吃饭了!

作者: 919b0c54458f | 来源:发表于2019-01-25 10:40 被阅读21次

去除重复数据

DataFrame中出现重复行有多种原因。下面就是一个例子:

import pandas as pd

import numpy as np

data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],

'k2': [1, 1, 2, 3, 3, 4, 4]})

data

k1k20one11two12one23two34one35two46two4

DataFrame的duplicated 方法返回一个布尔型Series ,表示各行是否是重复行(前面出现过的行):

data.duplicated()

0 False

1 False

2 False

3 False

4 False

5 False

6 True

dtype: bool

还有一个与此相关的drop_duplicates方法,它会返回一个DataFrame,重复的数组会标为False:

data.drop_duplicates()

k1k20one11two12one23two34one35two4

这两个方法默认会判断全部列,你也可以指定部分列进行重复项判断。假设我们还有一列值,且只希望根据k1列过滤重复项:

data['v1'] = range(7)

data

k1k2v10one101two112one223two334one345two456two46

data.drop_duplicates(['k1']) ### 只保留最先出现的

k1k2v10one101two11

duplicated 和drop_duplicates默认保留的是第一个出现的值组合。传入keep='last' 则保留最后一个:

data.drop_duplicates(['k1'], keep='last')

k1k2v14one346two46

data.drop_duplicates(['k1','k2'], keep='first')

k1k2v10one101two112one223two334one345two45

data.drop_duplicates(['k1','k2'], keep='last')

k1k2v10one101two112one223two334one346two46

利用函数或映射进行数据转换

对于许多数据集,你可能希望根据数组、Series 或DataFrame列中的值来实现转换工作。我们来看看下面这组有关肉类的数据:

data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon',

'Pastrami', 'corned beef', 'Bacon',

'pastrami', 'honey ham', 'nova lox'],

'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

data

foodounces0bacon4.01pulled pork3.02bacon12.03Pastrami6.04corned beef7.55Bacon8.06pastrami3.07honey ham5.08nova lox6.0

假设你想要添加一列表示该肉类食物来源的动物类型。我们先编写一个不同肉类到动物的映射:

meat_to_animal = {

'bacon': 'pig',

'pulled pork': 'pig',

'pastrami': 'cow',

'corned beef': 'cow',

'honey ham': 'pig',

'nova lox': 'salmon'

}

meat_to_animal

{'bacon': 'pig',

'pulled pork': 'pig',

'pastrami': 'cow',

'corned beef': 'cow',

'honey ham': 'pig',

'nova lox': 'salmon'}

Series 的map 方法可以接受一个函数或含有映射关系的字典型对象,但是这里有一个小问题,即有些肉类的首字母大写了,而另一些则没有。因此,我们还需要使用Series 的str.lower 方法,将各个值转换为小写:

data['animal']=data.food.str.lower().map(meat_to_animal)

data

foodouncesanimal0bacon4.0pig1pulled

pork3.0pig2bacon12.0pig3Pastrami6.0cow4corned

beef7.5cow5Bacon8.0pig6pastrami3.0cow7honey ham5.0pig8nova lox6.0salmon

我们也可以传入一个能够完成全部这些工作的函数:

data.food.map(lambda x: meat_to_animal[x.lower()]) ### 字典后面用[],里面填写的为键名

0 pig

1 pig

2 pig

3 cow

4 cow

5 pig

6 cow

7 pig

8 salmon

Name: food, dtype: object

使用map 是一种实现元素级转换以及其他数据清理工作的便捷方式。####看到map 想到的是不是R里面的apply

替换值

利用fillna方法填充缺失数据可以看做值替换的一种特殊情况。前面已经看到,map 可用于修改对象的数据子集,而replace则提供了一种实现该功能的更简单、更灵活的方式。我们来看看下面这个Series :

data2=pd.Series([1., -999., 2., -999., -1000., 3.])

data2

0 1.0

1 -999.0

2 2.0

3 -999.0

4 -1000.0

5 3.0

dtype: float64

-999这个值可能是一个表示缺失数据的标记值。要将其替换为pandas能够理解的NA值,我们可以利用replace来产生一个新的Series (除非传入inplace=True ):

data2.replace(-999,np.nan)

0 1.0

1 NaN

2 2.0

3 NaN

4 -1000.0

5 3.0

dtype: float64

如果你希望一次性替换多个值,可以传入一个由待替换值组成的列表以及一个替换值::

data2.replace([-999,-1000],np.nan)

0 1.0

1 NaN

2 2.0

3 NaN

4 NaN

5 3.0

dtype: float64

data2.replace([-999,-1000],[np.nan,0])

0 1.0

1 NaN

2 2.0

3 NaN

4 0.0

5 3.0

dtype: float64

传入的参数也可以是字典:

data2.replace({-999:np.nan,-1000:0})

0 1.0

1 NaN

2 2.0

3 NaN

4 0.0

5 3.0

dtype: float64

笔记:data.replace方法与data.str.replace 不同,后者做的是字符串的元素级替换。我们会在后面学习Series 的字符串方法。

重命名轴索引

跟Series 中的值一样,轴标签也可以通过函数或映射进行转换,从而得到一个新的不同标签的对象。轴还可以被就地修改,而无需新建一个数据结构。

接下来看看下面这个简单的例子:

data = pd.DataFrame(np.arange(12).reshape((3, 4)),

index=['Ohio', 'Colorado', 'New York'],

columns=['one', 'two', 'three', 'four'])

data

进群:960410445 获取更多项目源码!

onetwothreefourOhio0123Colorado4567New York891011

data.index.str.upper()

Index(['OHIO', 'COLORADO', 'NEW YORK'], dtype='object')

transf=lambda x:x[:3].upper()

data.index.map(transf)

Index(['OHI', 'COL', 'NEW'], dtype='object')

你可以将其赋值给index ,这样就可以对DataFrame进行就地修改:

data.index=data.index.map(transf)

data

onetwothreefourOHI0123COL4567NEW891011

如果想要创建数据集的转换版(而不是修改原始数据),比较实用的方法是rename :

data.rename(columns=str.upper) ##可以看到直接用str.upper就可以

ONETWOTHREEFOUROHI0123COL4567NEW891011

data.rename(index=str.lower,columns=str.upper)

ONETWOTHREEFOURohi0123col4567new891011

特别说明一下,rename 可以结合字典型对象实现对部分轴标签的更新:

data.rename(index={'COL':'col'},columns={'three':'THREE'})

onetwoTHREEfourOHI0123col4567NEW891011

rename 可以实现复制DataFrame并对其索引和列标签进行赋值。如果希望就地修改某个数据集,传入inplace=True 即可:

data.rename(index={'COL':'col'},columns={'three':'THREE'},inplace=True)

data

onetwoTHREEfourOHI0123col4567NEW891011

离散化和面元划分

为了便于分析,连续数据常常被离散化或拆分为“面元”(bin)。假设有一组人员数据,而你希望将它们划分为不同的年龄组:

ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]

接下来将这些数据划分为“18 到25”、“26 到35”、“35 到60”以及“60 以上”几个面元。要实现该功能,你需要使用pandas的cut函数:

bins = [18, 25, 35, 60, 100]

cats=pd.cut(ages,bins)

cats

[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]

Length: 12

Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]

pandas返回的是一个特殊的Categorical对象。结果展示了pandas.cut 划分的面元。你可以将其看做一组表示面元名称的字符串。它的底层含有一个表示不同分类名称的类型数组,以及一个codes 属性中的年龄数据的标签:

cats.codes

array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)

cats.categories

IntervalIndex([(18, 25], (25, 35], (35, 60], (60, 100]]

closed='right',

dtype='interval[int64]')

pd.value_counts(cats)

(18, 25] 5

(35, 60] 3

(25, 35] 3

(60, 100] 1

dtype: int64

pd.value_counts(cats) 是pandas.cut 结果的面元计数.跟“区间”的数学符号一样,圆括号表示开端,而方括号则表示闭端(包括)。哪边是闭端可以通过right=False 进行修改:

pd.cut(ages, [18, 26, 36, 61, 100], right=False)

[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)]

Length: 12

Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]

你可以通过传递一个列表或数组到labels ,设置自己的面元名称:

group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']

pd.cut(ages, [18, 26, 36, 61, 100], right=False,labels=group_names)

[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]

Length: 12

Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]

如果向cut传入的是面元的数量而不是确切的面元边界,则它会根据数据的最小值和最大值计算等长面元。下面这个例子中,我们将一些均匀分布的数据分成四组:

data = np.random.rand(20)

data

array([0.80223105, 0.88137599, 0.97961241, 0.920102 , 0.57567918,

0.72476966, 0.76192477, 0.75227536, 0.42585703, 0.3250243 ,

0.71434115, 0.6449239 , 0.73370247, 0.46096013, 0.73906558,

0.76717047, 0.81297268, 0.02281176, 0.3664884 , 0.07191769])

pd.cut(data,6,precision=1)

[(0.7, 0.8], (0.8, 1.0], (0.8, 1.0], (0.8, 1.0], (0.5, 0.7], ..., (0.7, 0.8], (0.7, 0.8], (0.02, 0.2], (0.3, 0.5], (0.02, 0.2]]

Length: 20

Categories (6, interval[float64]): [(0.02, 0.2] < (0.2, 0.3] < (0.3, 0.5] < (0.5, 0.7] < (0.7, 0.8] < (0.8, 1.0]]

选项precision=1,限定小数只有1位。qcut

是一个非常类似于cut的函数,它可以根据样本分位数对数据进行面元划分。根据数据的分布情况,cut可能无法使各个面元中含有相同数量的数据点。而qcut

由于使用的是样本分位数,因此可以得到大小基本相等的面元:

data = np.random.randn(1000) # 正太分布

cats = pd.qcut(data,3)

cats

[(-0.446, 0.386], (0.386, 3.875], (0.386, 3.875], (-2.834, -0.446], (0.386, 3.875], ..., (0.386, 3.875], (0.386, 3.875], (-2.834, -0.446], (-0.446, 0.386], (0.386, 3.875]]

Length: 1000

Categories (3, interval[float64]): [(-2.834, -0.446] < (-0.446, 0.386] < (0.386, 3.875]]

pd.value_counts(cats)

(-2.834, -0.446] 334

(0.386, 3.875] 333

(-0.446, 0.386] 333

dtype: int64

与cut类似,你也可以传递自定义的分位数(0到1之间的数值,包含端点):

cat=pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])

pd.value_counts(cat,sort=False)

(-2.834, -1.35] 100

(-1.35, -0.0784] 400

(-0.0784, 1.248] 400

(1.248, 3.875] 100

相关文章

  • Python喊你吃饭了!

    去除重复数据 DataFrame中出现重复行有多种原因。下面就是一个例子: import pandas as pd...

  • 《有人喊你吃饭》

    作者:乐闻飞鸿 小时候, 你在外边儿快乐玩耍, 妈妈喊你回家吃饭啦, 心里没有丁点儿怨言。 长大了, 你在屋里埋头...

  • 你妈喊你吃饭!

    我还是一个少女,但是我身边有很多时尚新手妈妈,初为人母,心中充满对未来的无限遐想。而这些美好的遐想中总...

  • 喊你回家吃饭

    在我的家乡,喊你回家吃饭不是网上流行语那么烂漫,而是一种现实的需要。 小的时候,我家在一个小山村,地处成都平原边缘...

  • 你妈喊你吃饭!

    【题目】你妈喊你吃饭 【字数】569 【正文】 吃饭了,吃饭了,吃饭了(声调越来越高),再不出来吃饭,你就别吃了…...

  • 老虎,妈妈喊你回家吃饭了

    1. 这两天被耳鸣和偏头痛折磨得寝食难安,整个人病恹恹的。吃不下东西,颅内不断的轰鸣声让我心烦意乱,反胃,眩晕。 ...

  • 职工食堂喊你吃饭了

    如果你想迅速了解世态万千,那你就去未城某电力公司的食堂吧。如果你不知道路或是没卡,那就让我带你去吧,你用我的卡,刷...

  • 我要成为孩子生命中最好的朋友——授人以鱼不如授人以渔

    儿子:妈妈,你喊妹妹吃饭的时候,轻声细语是这样的:晓晓,吃饭了! 而你喊我吃饭的时候是音高调了8度:沺渝,吃饭了!...

  • 小饭桌|会长喊你来吃饭了💅

    SCDA前任会长兼背锅王者发来贺电:那可真是天大的喜事儿啊.GIF 听导演说(导演是谁?全组懵逼中……)是为了庆祝...

  • 回家的诱惑:老妈喊你吃饭了

    昨天晚上微信发了条语音给妈妈,她回了条语音,说她在吃饭,等等吃完饭打给我。过了两分钟,手机界面亮了起来,上面显...

网友评论

      本文标题:Python喊你吃饭了!

      本文链接:https://www.haomeiwen.com/subject/djhmjqtx.html