美文网首页
pytorch基础三(LeNet)

pytorch基础三(LeNet)

作者: 永远学习中 | 来源:发表于2018-12-02 12:02 被阅读0次

本人学习pytorch主要参考官方文档莫烦Python中的pytorch视频教程。
后文主要是对pytorch官网的文档的总结。
主要用torch.nn模型和forward(imput)
网络构建代码:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        #改变数据维度为一维
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features
net = Net()
print(net)
#输出
# Net(
#   (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
#   (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
#   (fc1): Linear(in_features=400, out_features=120, bias=True)
#   (fc2): Linear(in_features=120, out_features=84, bias=True)
#   (fc3): Linear(in_features=84, out_features=10, bias=True)
# )

参数说明:

#获取网络中的所有参数的列表
params = list(net.parameters())
#获取网络参数长度
print(len(params))
#获取 conv1的weight矩阵大小
print(params[0].size()) 

之后以莫凡pytorch中的代码为例进行说明。

import os
# third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

# 设置网络超参数
EPOCH = 1               # 左右的数据总共迭代几次
BATCH_SIZE = 50
LR = 0.001              # 学习率
DOWNLOAD_MNIST = False  #是否下载MNIST数据集合


# 检测数据集是否存在
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True

train_data = torchvision.datasets.MNIST(
    root='./mnist/', train=True,  #提取训练数据集
    # 将PIL图像或者numpy.ndarry转化为torch.FloatTensor,维度为(C x H x W),并归一化为 [0.0, 1.0]
    transform=torchvision.transforms.ToTensor(),
    download=DOWNLOAD_MNIST,
)

# 绘制一个图像
# print(train_data.train_data.size())                 # (60000, 28, 28)
# print(train_data.train_labels.size())               # (60000)
# plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# plt.title('%i' % train_data.train_labels[0])
# plt.show()

# 启动数据加载器,在加载数据时进行打乱顺序,批次为BATCH_SIZE。批次数据的维度为(50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# 取2000个测试图像及对应标签进行测试
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 数据进行归一化为(0,1)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.
test_y = test_data.test_labels[:2000]

# 定义网络结构
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # input height
                out_channels=16,            # n_filters
                kernel_size=5,              # filter size
                stride=1,                   # filter movement/step
                padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
            ),                              # output shape (16, 28, 28)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(2),                # output shape (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output, x    # return x for visualization


cnn = CNN()
# 打印网络结构
print(cnn)
# 定义网络优化方法、损失*必须在训练循环外定义
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted

# 可视化代码
from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS_SK = True
except: HAS_SK = False; print('Please install sklearn for layer visualization')
def plot_with_labels(lowDWeights, labels):
    plt.cla()
    X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
    for x, y, s in zip(X, Y, labels):
        c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
    plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)
plt.ion()

# 训练和测试
for epoch in range(EPOCH):
    # 获取训练图像及标签
    for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
        # 获取输出结果
        output = cnn(b_x)[0]
        # 获取损失
        loss = loss_func(output, b_y)
        # 清理训练阶段梯度
        optimizer.zero_grad()
        # 反向传播,计算梯度
        loss.backward()
        # 执行梯度操作
        optimizer.step()
        # 每迭代50个batch进行一次测试并绘图
        if step % 50 == 0:
            test_output, last_layer = cnn(test_x)
            pred_y = torch.max(test_output, 1)[1].data.numpy()
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
            if HAS_SK:
                # Visualization of trained flatten layer (T-SNE)
                tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                plot_only = 500
                low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                labels = test_y.numpy()[:plot_only]
                plot_with_labels(low_dim_embs, labels)
plt.ioff()

# 进行测试
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')

总体流程为。

1.定义网络
2.设定优化方法
3.确定损失
4.在训练中完成,获取结果,计算损失,清理损失、反传、更新梯度。

相关文章

网友评论

      本文标题:pytorch基础三(LeNet)

      本文链接:https://www.haomeiwen.com/subject/djrdcqtx.html