美文网首页
调参整理

调参整理

作者: ZAK_ML | 来源:发表于2020-03-19 14:21 被阅读0次

RF,GBDT,xgboost调参方法整理

训练集、测试集loss容易出现的问题总结

train loss 不断下降,test loss不断下降:说明网络仍在学习;

train loss 不断下降,test loss趋于不变:说明网络过拟合;

train loss 趋于不变,test loss不断下降:说明数据集100%有问题;

train loss 趋于不变,test loss趋于不变:说明学习遇到瓶颈,需要减小学习率或批量数目;或者是数据集有问题(数据集标注错误数据比较多)

train loss 不断上升,test loss不断上升:说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。

相关文章

  • 调参整理

    RF,GBDT,xgboost调参方法整理 训练集、测试集loss容易出现的问题总结 train loss 不断下...

  • 调参

    1首先是数据增强,因为正常情况下,数据量往往不够,因此需要通过裁剪 2数据预处理,pca,normalizatio...

  • 调参

    参数更新 神经网络的学习目的是找到使损失函数尽可能小的参数,即解决一个最优化问题.但是由于神经网络参数空间过于复杂...

  • 调参

    死亡的神经元占的比例 RELU 文中给出了一种针对ReLU神经元的特殊初始化,并给出结论:网络中神经元的方差应该是...

  • 调参

    转载https://www.sohu.com/a/241208957_787107 基本原则:快速试错 一些大的注...

  • 调参

    1.lr用1e-2-1e-3结果较好。lr值小的话,上升test auc会比较慢,但最后结果说不定会比lr大要好。...

  • Day 6: 参数调节

    我们平时一直都在说“调参、调参”,但实际上,不是调“参数”,而是调“超参数” 1.参数(Parameter) 参数...

  • 深度学习调参技巧 调参trick

    |公|众|号|包包算法笔记| 背景 事情的起因其实这样,实验室老同学的论文要冲分,问我有没有啥在NN上,基本都有用...

  • XGboost 基线模型及部分参数优化

    1 模型原理及调参参考 调参:XGBoost参数调优完全指南原理:xgboost入门与实战(原理篇) 2 输出基线...

  • JVM调参

    今天看了下之前做的一个异步处理任务的服务,发现占用内存量比较大,达到2G,但我检查了代码,基本没有static对象...

网友评论

      本文标题:调参整理

      本文链接:https://www.haomeiwen.com/subject/dkclyhtx.html