美文网首页
sklearn.GridSearchCV选择超参

sklearn.GridSearchCV选择超参

作者: FF_b0bf | 来源:发表于2019-01-22 15:06 被阅读0次
    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.svm import SVC
    # Loading the Digits dataset
    digits = datasets.load_digits()
    
    # To apply an classifier on this data, we need to flatten the image, to
    # turn the data in a (samples, feature) matrix:
    n_samples = len(digits.images)
    # 分别 取出 数据 与 标签 reshape的作用是把原始矩阵格式的像素数据转化为一行一个样本的形式
    X = digits.images.reshape((n_samples, -1))
    y = digits.target
    
    # Split the dataset in two equal parts
    # 分割测试数据与训练数据(注意这里已经分割了数据集)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.5, random_state=0)
    
    # Set the parameters by cross-validation
    # 输入模型的超参由验证集来选择
    # SVM主要的超参有类似于正则的系数和内核函数
    tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
                         'C': [1, 10, 100, 1000]},
                        {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
    
    #观察角度分别有准度与回归
    scores = ['precision', 'recall']
    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()
        # 通过 GridSearchCV 搜索最佳的超参数
        clf = GridSearchCV(SVC(), tuned_parameters, cv=5,
                           scoring='%s_macro' % score)
      # 这里进行交叉验证的数据是之前分割的训练数据
      # 而交叉验证本身又会分割数据,所以交叉验证这里分割的测试集我么可以看做为验证集,用来拟合模型的超参
        clf.fit(X_train, y_train)
    
        print("Best parameters set found on development set:")
        print()
        print(clf.best_params_)
        print()
        print("Grid scores on development set:")
        print()
        means = clf.cv_results_['mean_test_score']
        stds = clf.cv_results_['std_test_score']
        for mean, std, params in zip(means, stds, clf.cv_results_['params']):
            print("%0.3f (+/-%0.03f) for %r"
                  % (mean, std * 2, params))
        print()
    
        print("Detailed classification report:")
        print()
        print("The model is trained on the full development set.")
        print("The scores are computed on the full evaluation set.")
        print()
        # 注意最后利用测试集展示的才是泛化误差
        y_true, y_pred = y_test, clf.predict(X_test)
        
        print(classification_report(y_true, y_pred))
        print()
        #关于验证集与交叉验证的关系,解释链接 https://www.jianshu.com/p/67010cba1834
        
    

    相关文章

      网友评论

          本文标题:sklearn.GridSearchCV选择超参

          本文链接:https://www.haomeiwen.com/subject/dlbljqtx.html